Theory Tarski
section ‹The Full Theorem of Tarski›
theory Tarski
imports Main "HOL-Library.FuncSet"
begin
text ‹
Minimal version of lattice theory plus the full theorem of Tarski:
The fixedpoints of a complete lattice themselves form a complete
lattice.
Illustrates first-class theories, using the Sigma representation of
structures. Tidied and converted to Isar by lcp.
›
record 'a potype =
pset :: "'a set"
order :: "('a × 'a) set"
definition monotone :: "['a ⇒ 'a, 'a set, ('a × 'a) set] ⇒ bool"
where "monotone f A r ⟷ (∀x∈A. ∀y∈A. (x, y) ∈ r ⟶ (f x, f y) ∈ r)"
definition least :: "['a ⇒ bool, 'a potype] ⇒ 'a"
where "least P po = (SOME x. x ∈ pset po ∧ P x ∧ (∀y ∈ pset po. P y ⟶ (x, y) ∈ order po))"
definition greatest :: "['a ⇒ bool, 'a potype] ⇒ 'a"
where "greatest P po = (SOME x. x ∈ pset po ∧ P x ∧ (∀y ∈ pset po. P y ⟶ (y, x) ∈ order po))"
definition lub :: "['a set, 'a potype] ⇒ 'a"
where "lub S po = least (λx. ∀y∈S. (y, x) ∈ order po) po"
definition glb :: "['a set, 'a potype] ⇒ 'a"
where "glb S po = greatest (λx. ∀y∈S. (x, y) ∈ order po) po"
definition isLub :: "['a set, 'a potype, 'a] ⇒ bool"
where "isLub S po =
(λL. L ∈ pset po ∧ (∀y∈S. (y, L) ∈ order po) ∧
(∀z∈pset po. (∀y∈S. (y, z) ∈ order po) ⟶ (L, z) ∈ order po))"
definition isGlb :: "['a set, 'a potype, 'a] ⇒ bool"
where "isGlb S po =
(λG. (G ∈ pset po ∧ (∀y∈S. (G, y) ∈ order po) ∧
(∀z ∈ pset po. (∀y∈S. (z, y) ∈ order po) ⟶ (z, G) ∈ order po)))"
definition "fix" :: "['a ⇒ 'a, 'a set] ⇒ 'a set"
where "fix f A = {x. x ∈ A ∧ f x = x}"
definition interval :: "[('a × 'a) set, 'a, 'a] ⇒ 'a set"
where "interval r a b = {x. (a, x) ∈ r ∧ (x, b) ∈ r}"
definition Bot :: "'a potype ⇒ 'a"
where "Bot po = least (λx. True) po"
definition Top :: "'a potype ⇒ 'a"
where "Top po = greatest (λx. True) po"
definition PartialOrder :: "'a potype set"
where "PartialOrder = {P. refl_on (pset P) (order P) ∧ antisym (order P) ∧ trans (order P)}"
definition CompleteLattice :: "'a potype set"
where "CompleteLattice =
{cl. cl ∈ PartialOrder ∧
(∀S. S ⊆ pset cl ⟶ (∃L. isLub S cl L)) ∧
(∀S. S ⊆ pset cl ⟶ (∃G. isGlb S cl G))}"
definition CLF_set :: "('a potype × ('a ⇒ 'a)) set"
where "CLF_set =
(SIGMA cl : CompleteLattice.
{f. f ∈ pset cl → pset cl ∧ monotone f (pset cl) (order cl)})"
definition induced :: "['a set, ('a × 'a) set] ⇒ ('a × 'a) set"
where "induced A r = {(a, b). a ∈ A ∧ b ∈ A ∧ (a, b) ∈ r}"
definition sublattice :: "('a potype × 'a set) set"
where "sublattice =
(SIGMA cl : CompleteLattice.
{S. S ⊆ pset cl ∧ ⦇pset = S, order = induced S (order cl)⦈ ∈ CompleteLattice})"
abbreviation sublat :: "['a set, 'a potype] ⇒ bool" ("_ <<= _" [51, 50] 50)
where "S <<= cl ≡ S ∈ sublattice `` {cl}"
definition dual :: "'a potype ⇒ 'a potype"
where "dual po = ⦇pset = pset po, order = converse (order po)⦈"
locale S =
fixes cl :: "'a potype"
and A :: "'a set"
and r :: "('a × 'a) set"
defines A_def: "A ≡ pset cl"
and r_def: "r ≡ order cl"
locale PO = S +
assumes cl_po: "cl ∈ PartialOrder"
locale CL = S +
assumes cl_co: "cl ∈ CompleteLattice"
sublocale CL < po?: PO
unfolding A_def r_def
using CompleteLattice_def PO.intro cl_co by fastforce
locale CLF = S +
fixes f :: "'a ⇒ 'a"
and P :: "'a set"
assumes f_cl: "(cl, f) ∈ CLF_set"
defines P_def: "P ≡ fix f A"
sublocale CLF < cl?: CL
unfolding A_def r_def CL_def
using CLF_set_def f_cl by blast
locale Tarski = CLF +
fixes Y :: "'a set"
and intY1 :: "'a set"
and v :: "'a"
assumes Y_ss: "Y ⊆ P"
defines intY1_def: "intY1 ≡ interval r (lub Y cl) (Top cl)"
and v_def: "v ≡
glb {x. ((λx ∈ intY1. f x) x, x) ∈ induced intY1 r ∧ x ∈ intY1}
⦇pset = intY1, order = induced intY1 r⦈"
subsection ‹Partial Order›
context PO
begin
lemma dual: "PO (dual cl)"
proof
show "dual cl ∈ PartialOrder"
using cl_po unfolding PartialOrder_def dual_def by auto
qed
lemma PO_imp_refl_on [simp]: "refl_on A r"
using cl_po by (simp add: PartialOrder_def A_def r_def)
lemma PO_imp_sym [simp]: "antisym r"
using cl_po by (simp add: PartialOrder_def r_def)
lemma PO_imp_trans [simp]: "trans r"
using cl_po by (simp add: PartialOrder_def r_def)
lemma reflE: "x ∈ A ⟹ (x, x) ∈ r"
using cl_po by (simp add: PartialOrder_def refl_on_def A_def r_def)
lemma antisymE: "⟦(a, b) ∈ r; (b, a) ∈ r⟧ ⟹ a = b"
using cl_po by (simp add: PartialOrder_def antisym_def r_def)
lemma transE: "⟦(a, b) ∈ r; (b, c) ∈ r⟧ ⟹ (a, c) ∈ r"
using cl_po by (simp add: PartialOrder_def r_def) (unfold trans_def, fast)
lemma monotoneE: "⟦monotone f A r; x ∈ A; y ∈ A; (x, y) ∈ r⟧ ⟹ (f x, f y) ∈ r"
by (simp add: monotone_def)
lemma po_subset_po:
assumes "S ⊆ A" shows "⦇pset = S, order = induced S r⦈ ∈ PartialOrder"
proof -
have "refl_on S (induced S r)"
using ‹S ⊆ A› by (auto simp: refl_on_def induced_def intro: reflE)
moreover
have "antisym (induced S r)"
by (auto simp add: antisym_def induced_def intro: antisymE)
moreover
have "trans (induced S r)"
by (auto simp add: trans_def induced_def intro: transE)
ultimately show ?thesis
by (simp add: PartialOrder_def)
qed
lemma indE: "⟦(x, y) ∈ induced S r; S ⊆ A⟧ ⟹ (x, y) ∈ r"
by (simp add: induced_def)
lemma indI: "⟦(x, y) ∈ r; x ∈ S; y ∈ S⟧ ⟹ (x, y) ∈ induced S r"
by (simp add: induced_def)
end
lemma (in CL) CL_imp_ex_isLub: "S ⊆ A ⟹ ∃L. isLub S cl L"
using cl_co by (simp add: CompleteLattice_def A_def)
declare (in CL) cl_co [simp]
lemma isLub_lub: "(∃L. isLub S cl L) ⟷ isLub S cl (lub S cl)"
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
lemma isGlb_glb: "(∃G. isGlb S cl G) ⟷ isGlb S cl (glb S cl)"
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
by (simp add: isLub_def isGlb_def dual_def converse_unfold)
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
by (simp add: isLub_def isGlb_def dual_def converse_unfold)
lemma (in PO) dualPO: "dual cl ∈ PartialOrder"
using cl_po by (simp add: PartialOrder_def dual_def)
lemma Rdual:
assumes major: "⋀S. S ⊆ A ⟹ ∃L. isLub S po L" and "S ⊆ A" and "A = pset po"
shows "∃G. isGlb S po G"
proof
show "isGlb S po (lub {y ∈ A. ∀k∈S. (y, k) ∈ order po} po)"
using major [of "{y. y ∈ A ∧ (∀k ∈ S. (y, k) ∈ order po)}"] ‹S ⊆ A› ‹A = pset po›
apply (simp add: isLub_lub isGlb_def)
apply (auto simp add: isLub_def)
done
qed
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold)
lemma CL_subset_PO: "CompleteLattice ⊆ PartialOrder"
by (auto simp: PartialOrder_def CompleteLattice_def)
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
context CL
begin
lemma CO_refl_on: "refl_on A r"
by (rule PO_imp_refl_on)
lemma CO_antisym: "antisym r"
by (rule PO_imp_sym)
lemma CO_trans: "trans r"
by (rule PO_imp_trans)
end
lemma CompleteLatticeI:
"⟦po ∈ PartialOrder; ∀S. S ⊆ pset po ⟶ (∃L. isLub S po L);
∀S. S ⊆ pset po ⟶ (∃G. isGlb S po G)⟧
⟹ po ∈ CompleteLattice"
unfolding CompleteLattice_def by blast
lemma (in CL) CL_dualCL: "dual cl ∈ CompleteLattice"
using cl_co
apply (simp add: CompleteLattice_def dual_def)
apply (simp add: dualPO flip: dual_def isLub_dual_isGlb isGlb_dual_isLub)
done
context PO
begin
lemma dualA_iff [simp]: "pset (dual cl) = pset cl"
by (simp add: dual_def)
lemma dualr_iff [simp]: "(x, y) ∈ (order (dual cl)) ⟷ (y, x) ∈ order cl"
by (simp add: dual_def)
lemma monotone_dual:
"monotone f (pset cl) (order cl) ⟹ monotone f (pset (dual cl)) (order(dual cl))"
by (simp add: monotone_def)
lemma interval_dual: "⟦x ∈ A; y ∈ A⟧ ⟹ interval r x y = interval (order(dual cl)) y x"
unfolding interval_def dualr_iff by (auto simp flip: r_def)
lemma interval_not_empty: "interval r a b ≠ {} ⟹ (a, b) ∈ r"
by (simp add: interval_def) (use transE in blast)
lemma interval_imp_mem: "x ∈ interval r a b ⟹ (a, x) ∈ r"
by (simp add: interval_def)
lemma left_in_interval: "⟦a ∈ A; b ∈ A; interval r a b ≠ {}⟧ ⟹ a ∈ interval r a b"
using interval_def interval_not_empty reflE by fastforce
lemma right_in_interval: "⟦a ∈ A; b ∈ A; interval r a b ≠ {}⟧ ⟹ b ∈ interval r a b"
by (simp add: A_def PO.dual PO.left_in_interval PO_axioms interval_dual)
end
subsection ‹sublattice›
lemma (in PO) sublattice_imp_CL:
"S <<= cl ⟹ ⦇pset = S, order = induced S r⦈ ∈ CompleteLattice"
by (simp add: sublattice_def CompleteLattice_def r_def)
lemma (in CL) sublatticeI:
"⟦S ⊆ A; ⦇pset = S, order = induced S r⦈ ∈ CompleteLattice⟧ ⟹ S <<= cl"
by (simp add: sublattice_def A_def r_def)
lemma (in CL) dual: "CL (dual cl)"
proof
show "dual cl ∈ CompleteLattice"
using cl_co
by (simp add: CompleteLattice_def dualPO flip: isGlb_dual_isLub isLub_dual_isGlb)
qed
subsection ‹lub›
context CL
begin
lemma lub_unique: "⟦S ⊆ A; isLub S cl x; isLub S cl L⟧ ⟹ x = L"
by (rule antisymE) (auto simp add: isLub_def r_def)
lemma lub_upper:
assumes "S ⊆ A" "x ∈ S" shows "(x, lub S cl) ∈ r"
proof -
obtain L where "isLub S cl L"
using CL_imp_ex_isLub ‹S ⊆ A› by auto
then show ?thesis
by (metis assms(2) isLub_def isLub_lub r_def)
qed
lemma lub_least:
assumes "S ⊆ A" and L: "L ∈ A" "∀x ∈ S. (x, L) ∈ r" shows "(lub S cl, L) ∈ r"
proof -
obtain L' where "isLub S cl L'"
using CL_imp_ex_isLub ‹S ⊆ A› by auto
then show ?thesis
by (metis A_def L isLub_def isLub_lub r_def)
qed
lemma lub_in_lattice:
assumes "S ⊆ A" shows "lub S cl ∈ A"
proof -
obtain L where "isLub S cl L"
using CL_imp_ex_isLub ‹S ⊆ A› by auto
then show ?thesis
by (metis A_def isLub_def isLub_lub)
qed
lemma lubI:
assumes A: "S ⊆ A" "L ∈ A" and r: "∀x ∈ S. (x, L) ∈ r"
and clo: "⋀z. ⟦z ∈ A; (∀y ∈ S. (y, z) ∈ r)⟧ ⟹ (L, z) ∈ r"
shows "L = lub S cl"
proof -
obtain L where "isLub S cl L"
using CL_imp_ex_isLub assms(1) by auto
then show ?thesis
by (simp add: antisymE A clo lub_in_lattice lub_least lub_upper r)
qed
lemma lubIa: "⟦S ⊆ A; isLub S cl L⟧ ⟹ L = lub S cl"
by (meson isLub_lub lub_unique)
lemma isLub_in_lattice: "isLub S cl L ⟹ L ∈ A"
by (simp add: isLub_def A_def)
lemma isLub_upper: "⟦isLub S cl L; y ∈ S⟧ ⟹ (y, L) ∈ r"
by (simp add: isLub_def r_def)
lemma isLub_least: "⟦isLub S cl L; z ∈ A; ∀y ∈ S. (y, z) ∈ r⟧ ⟹ (L, z) ∈ r"
by (simp add: isLub_def A_def r_def)
lemma isLubI:
"⟦L ∈ A; ∀y ∈ S. (y, L) ∈ r; (∀z ∈ A. (∀y ∈ S. (y, z)∈r) ⟶ (L, z) ∈ r)⟧ ⟹ isLub S cl L"
by (simp add: isLub_def A_def r_def)
end
subsection ‹glb›
context CL
begin
lemma glb_in_lattice: "S ⊆ A ⟹ glb S cl ∈ A"
by (metis A_def CL.lub_in_lattice dualA_iff glb_dual_lub local.dual)
lemma glb_lower: "⟦S ⊆ A; x ∈ S⟧ ⟹ (glb S cl, x) ∈ r"
by (metis A_def CL.lub_upper dualA_iff dualr_iff glb_dual_lub local.dual r_def)
end
text ‹
Reduce the sublattice property by using substructural properties;
abandoned see ‹Tarski_4.ML›.
›
context CLF
begin
lemma [simp]: "f ∈ pset cl → pset cl ∧ monotone f (pset cl) (order cl)"
using f_cl by (simp add: CLF_set_def)
declare f_cl [simp]
lemma f_in_funcset: "f ∈ A → A"
by (simp add: A_def)
lemma monotone_f: "monotone f A r"
by (simp add: A_def r_def)
lemma CLF_dual: "(dual cl, f) ∈ CLF_set"
proof -
have "Tarski.monotone f A (order (dual cl))"
by (metis (no_types) A_def PO.monotone_dual PO_axioms dualA_iff monotone_f r_def)
then show ?thesis
by (simp add: A_def CLF_set_def CL_dualCL)
qed
lemma dual: "CLF (dual cl) f"
by (rule CLF.intro) (rule CLF_dual)
end
subsection ‹fixed points›
lemma fix_subset: "fix f A ⊆ A"
by (auto simp: fix_def)
lemma fix_imp_eq: "x ∈ fix f A ⟹ f x = x"
by (simp add: fix_def)
lemma fixf_subset: "⟦A ⊆ B; x ∈ fix (λy ∈ A. f y) A⟧ ⟹ x ∈ fix f B"
by (auto simp: fix_def)
subsection ‹lemmas for Tarski, lub›
context CLF
begin
lemma lubH_le_flubH:
assumes "H = {x ∈ A. (x, f x) ∈ r}"
shows "(lub H cl, f (lub H cl)) ∈ r"
proof (intro lub_least ballI)
show "H ⊆ A"
using assms
by auto
show "f (lub H cl) ∈ A"
using ‹H ⊆ A› f_in_funcset lub_in_lattice by auto
show "(x, f (lub H cl)) ∈ r" if "x ∈ H" for x
proof -
have "(f x, f (lub H cl)) ∈ r"
by (meson ‹H ⊆ A› in_mono lub_in_lattice lub_upper monotoneE monotone_f that)
moreover have "(x, f x) ∈ r"
using assms that by blast
ultimately show ?thesis
using po.transE by blast
qed
qed
lemma lubH_is_fixp:
assumes "H = {x ∈ A. (x, f x) ∈ r}"
shows "lub H cl ∈ fix f A"
proof -
have "(f (lub H cl), lub H cl) ∈ r"
proof -
have "(lub H cl, f (lub H cl)) ∈ r"
using assms lubH_le_flubH by blast
then have "(f (lub H cl), f (f (lub H cl))) ∈ r"
by (meson PO_imp_refl_on monotoneE monotone_f refl_on_domain)
then have "f (lub H cl) ∈ H"
by (metis (no_types, lifting) PO_imp_refl_on assms mem_Collect_eq refl_on_domain)
then show ?thesis
by (simp add: assms lub_upper)
qed
with assms show ?thesis
by (simp add: fix_def antisymE lubH_le_flubH lub_in_lattice)
qed
lemma fixf_le_lubH:
assumes "H = {x ∈ A. (x, f x) ∈ r}" "x ∈ fix f A"
shows "(x, lub H cl) ∈ r"
proof -
have "x ∈ P ⟹ x ∈ H"
by (simp add: assms P_def fix_imp_eq [of _ f A] reflE fix_subset [of f A, THEN subsetD])
with assms show ?thesis
by (metis (no_types, lifting) P_def lub_upper mem_Collect_eq subset_eq)
qed
subsection ‹Tarski fixpoint theorem 1, first part›
lemma T_thm_1_lub: "lub P cl = lub {x ∈ A. (x, f x) ∈ r} cl"
proof -
have "lub {x ∈ A. (x, f x) ∈ r} cl = lub (fix f A) cl"
proof (rule antisymE)
show "(lub {x ∈ A. (x, f x) ∈ r} cl, lub (fix f A) cl) ∈ r"
by (simp add: fix_subset lubH_is_fixp lub_upper)
have "⋀a. a ∈ fix f A ⟹ a ∈ A"
by (meson fix_subset subset_iff)
then show "(lub (fix f A) cl, lub {x ∈ A. (x, f x) ∈ r} cl) ∈ r"
by (simp add: fix_subset fixf_le_lubH lubH_is_fixp lub_least)
qed
then show ?thesis
using P_def by auto
qed
lemma glbH_is_fixp:
assumes "H = {x ∈ A. (f x, x) ∈ r}" shows "glb H cl ∈ P"
proof -
have "glb H cl ∈ fix f (pset (dual cl))"
using assms CLF.lubH_is_fixp [OF dual] PO.dualr_iff PO_axioms
by (fastforce simp add: A_def r_def glb_dual_lub)
then show ?thesis
by (simp add: A_def P_def)
qed
lemma T_thm_1_glb: "glb P cl = glb {x ∈ A. (f x, x) ∈ r} cl"
unfolding glb_dual_lub P_def A_def r_def
using CLF.T_thm_1_lub dualA_iff dualr_iff local.dual by force
subsection ‹interval›
lemma rel_imp_elem: "(x, y) ∈ r ⟹ x ∈ A"
using CO_refl_on by (auto simp: refl_on_def)
lemma interval_subset: "⟦a ∈ A; b ∈ A⟧ ⟹ interval r a b ⊆ A"
by (simp add: interval_def) (blast intro: rel_imp_elem)
lemma intervalI: "⟦(a, x) ∈ r; (x, b) ∈ r⟧ ⟹ x ∈ interval r a b"
by (simp add: interval_def)
lemma interval_lemma1: "⟦S ⊆ interval r a b; x ∈ S⟧ ⟹ (a, x) ∈ r"
unfolding interval_def by fast
lemma interval_lemma2: "⟦S ⊆ interval r a b; x ∈ S⟧ ⟹ (x, b) ∈ r"
unfolding interval_def by fast
lemma a_less_lub: "⟦S ⊆ A; S ≠ {}; ∀x ∈ S. (a,x) ∈ r; ∀y ∈ S. (y, L) ∈ r⟧ ⟹ (a, L) ∈ r"
by (blast intro: transE)
lemma S_intv_cl: "⟦a ∈ A; b ∈ A; S ⊆ interval r a b⟧ ⟹ S ⊆ A"
by (simp add: subset_trans [OF _ interval_subset])
lemma L_in_interval:
assumes "b ∈ A" and S: "S ⊆ interval r a b" "isLub S cl L" "S ≠ {}"
shows "L ∈ interval r a b"
proof (rule intervalI)
show "(a, L) ∈ r"
by (meson PO_imp_trans all_not_in_conv S interval_lemma1 isLub_upper transD)
show "(L, b) ∈ r"
using ‹b ∈ A› assms interval_lemma2 isLub_least by auto
qed
lemma G_in_interval:
assumes "b ∈ A" and S: "S ⊆ interval r a b" "isGlb S cl G" "S ≠ {}"
shows "G ∈ interval r a b"
proof -
have "a ∈ A"
using S(1) ‹S ≠ {}› interval_lemma1 rel_imp_elem by blast
with assms show ?thesis
by (metis (no_types) A_def CLF.L_in_interval dualA_iff interval_dual isGlb_dual_isLub local.dual)
qed
lemma intervalPO:
"⟦a ∈ A; b ∈ A; interval r a b ≠ {}⟧
⟹ ⦇pset = interval r a b, order = induced (interval r a b) r⦈ ∈ PartialOrder"
by (rule po_subset_po) (simp add: interval_subset)
lemma intv_CL_lub:
assumes "a ∈ A" "b ∈ A" "interval r a b ≠ {}" and S: "S ⊆ interval r a b"
shows "∃L. isLub S ⦇pset = interval r a b, order = induced (interval r a b) r⦈ L"
proof -
obtain L where L: "isLub S cl L"
by (meson CL_imp_ex_isLub S_intv_cl assms(1) assms(2) assms(4))
show ?thesis
unfolding isLub_def potype.simps
proof (intro exI impI conjI ballI)
let ?L = "(if S = {} then a else L)"
show Lin: "?L ∈ interval r a b"
using L L_in_interval assms left_in_interval by auto
show "(y, ?L) ∈ induced (interval r a b) r" if "y ∈ S" for y
proof -
have "S ≠ {}"
using that by blast
then show ?thesis
using L Lin S indI isLub_upper that by auto
qed
show "(?L, z) ∈ induced (interval r a b) r"
if "z ∈ interval r a b" and "∀y∈S. (y, z) ∈ induced (interval r a b) r" for z
using that L
apply (simp add: isLub_def induced_def interval_imp_mem)
by (metis (full_types) A_def Lin ‹a ∈ A› ‹b ∈ A› interval_subset r_def subset_eq)
qed
qed
lemmas intv_CL_glb = intv_CL_lub [THEN Rdual]
lemma interval_is_sublattice: "⟦a ∈ A; b ∈ A; interval r a b ≠ {}⟧ ⟹ interval r a b <<= cl"
apply (rule sublatticeI)
apply (simp add: interval_subset)
by (simp add: CompleteLatticeI intervalPO intv_CL_glb intv_CL_lub)
lemmas interv_is_compl_latt = interval_is_sublattice [THEN sublattice_imp_CL]
subsection ‹Top and Bottom›
lemma Top_dual_Bot: "Top cl = Bot (dual cl)"
by (simp add: Top_def Bot_def least_def greatest_def)
lemma Bot_dual_Top: "Bot cl = Top (dual cl)"
by (simp add: Top_def Bot_def least_def greatest_def)
lemma Bot_in_lattice: "Bot cl ∈ A"
unfolding Bot_def least_def
apply (rule_tac a = "glb A cl" in someI2)
using glb_in_lattice glb_lower by (auto simp: A_def r_def)
lemma Top_in_lattice: "Top cl ∈ A"
using A_def CLF.Bot_in_lattice Top_dual_Bot local.dual by force
lemma Top_prop: "x ∈ A ⟹ (x, Top cl) ∈ r"
unfolding Top_def greatest_def
apply (rule_tac a = "lub A cl" in someI2)
using lub_in_lattice lub_upper by (auto simp: A_def r_def)
lemma Bot_prop: "x ∈ A ⟹ (Bot cl, x) ∈ r"
using A_def Bot_dual_Top CLF.Top_prop dualA_iff dualr_iff local.dual r_def by fastforce
lemma Top_intv_not_empty: "x ∈ A ⟹ interval r x (Top cl) ≠ {}"
using Top_prop intervalI reflE by force
lemma Bot_intv_not_empty: "x ∈ A ⟹ interval r (Bot cl) x ≠ {}"
using Bot_dual_Top Bot_prop intervalI reflE by fastforce
text ‹the set of fixed points form a partial order›
proposition fixf_po: "⦇pset = P, order = induced P r⦈ ∈ PartialOrder"
by (simp add: P_def fix_subset po_subset_po)
end
context Tarski
begin
lemma Y_subset_A: "Y ⊆ A"
by (rule subset_trans [OF _ fix_subset]) (rule Y_ss [simplified P_def])
lemma lubY_in_A: "lub Y cl ∈ A"
by (rule Y_subset_A [THEN lub_in_lattice])
lemma lubY_le_flubY: "(lub Y cl, f (lub Y cl)) ∈ r"
proof (intro lub_least Y_subset_A ballI)
show "f (lub Y cl) ∈ A"
by (meson Tarski.monotone_def lubY_in_A monotone_f reflE rel_imp_elem)
show "(x, f (lub Y cl)) ∈ r" if "x ∈ Y" for x
proof
have "⋀A. Y ⊆ A ⟹ x ∈ A"
using that by blast
moreover have "(x, lub Y cl) ∈ r"
using that by (simp add: Y_subset_A lub_upper)
ultimately show "(x, f (lub Y cl)) ∈ r"
by (metis (no_types) Tarski.Y_ss Tarski_axioms Y_subset_A fix_imp_eq lubY_in_A monotoneE monotone_f)
qed auto
qed
lemma intY1_subset: "intY1 ⊆ A"
unfolding intY1_def using Top_in_lattice interval_subset lubY_in_A by auto
lemmas intY1_elem = intY1_subset [THEN subsetD]
lemma intY1_f_closed:
assumes "x ∈ intY1" shows "f x ∈ intY1"
proof (simp add: intY1_def interval_def, rule conjI)
show "(lub Y cl, f x) ∈ r"
using assms intY1_elem interval_imp_mem lubY_in_A unfolding intY1_def
using lubY_le_flubY monotoneE monotone_f po.transE by blast
then show "(f x, Top cl) ∈ r"
by (meson PO_imp_refl_on Top_prop refl_onD2)
qed
lemma intY1_mono: "monotone (λ x ∈ intY1. f x) intY1 (induced intY1 r)"
apply (auto simp add: monotone_def induced_def intY1_f_closed)
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
done
lemma intY1_is_cl: "⦇pset = intY1, order = induced intY1 r⦈ ∈ CompleteLattice"
unfolding intY1_def
by (simp add: Top_in_lattice Top_intv_not_empty interv_is_compl_latt lubY_in_A)
lemma v_in_P: "v ∈ P"
proof -
have "v ∈ fix (restrict f intY1) intY1"
unfolding v_def
apply (rule CLF.glbH_is_fixp
[OF CLF.intro, unfolded CLF_set_def, of "⦇pset = intY1, order = induced intY1 r⦈", simplified])
using intY1_f_closed intY1_is_cl intY1_mono apply blast+
done
then show ?thesis
unfolding P_def
by (meson fixf_subset intY1_subset)
qed
lemma z_in_interval: "⟦z ∈ P; ∀y∈Y. (y, z) ∈ induced P r⟧ ⟹ z ∈ intY1"
unfolding intY1_def P_def
by (meson Top_prop Y_subset_A fix_subset in_mono indE intervalI lub_least)
lemma tarski_full_lemma: "∃L. isLub Y ⦇pset = P, order = induced P r⦈ L"
proof
have "(y, v) ∈ induced P r" if "y ∈ Y" for y
proof -
have "(y, lub Y cl) ∈ r"
by (simp add: Y_subset_A lub_upper that)
moreover have "(lub Y cl, v) ∈ r"
by (metis (no_types, lifting) CL.glb_in_lattice CL.intro intY1_def intY1_is_cl interval_imp_mem lub_dual_glb mem_Collect_eq select_convs(1) subsetI v_def)
ultimately have "(y, v) ∈ r"
using po.transE by blast
then show ?thesis
using Y_ss indI that v_in_P by auto
qed
moreover have "(v, z) ∈ induced P r" if "z ∈ P" "∀y∈Y. (y, z) ∈ induced P r" for z
proof (rule indI)
have "((λx ∈ intY1. f x) z, z) ∈ induced intY1 r"
by (metis P_def fix_imp_eq in_mono indI intY1_subset reflE restrict_apply' that z_in_interval)
then show "(v, z) ∈ r"
by (metis (no_types, lifting) CL.glb_lower CL_def indE intY1_is_cl intY1_subset mem_Collect_eq select_convs(1,2) subsetI that v_def z_in_interval)
qed (auto simp: that v_in_P)
ultimately
show "isLub Y ⦇pset = P, order = induced P r⦈ v"
by (simp add: isLub_def v_in_P)
qed
end
lemma CompleteLatticeI_simp:
"⟦po ∈ PartialOrder; ⋀S. S ⊆ A ⟹ ∃L. isLub S po L; A = pset po⟧ ⟹ po ∈ CompleteLattice"
by (metis CompleteLatticeI Rdual)
theorem (in CLF) Tarski_full: "⦇pset = P, order = induced P r⦈ ∈ CompleteLattice"
proof (intro CompleteLatticeI_simp allI impI)
show "⦇pset = P, order = induced P r⦈ ∈ PartialOrder"
by (simp add: fixf_po)
show "⋀S. S ⊆ P ⟹ ∃L. isLub S ⦇pset = P, order = induced P r⦈ L"
unfolding P_def A_def r_def
proof (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]])
show "CLF cl f" ..
qed
qed auto
end