Theory Executable_Relation
theory Executable_Relation
imports Main
begin
subsection ‹A dedicated type for relations›
subsubsection ‹Definition of the dedicated type for relations›
typedef 'a rel = "UNIV :: (('a * 'a) set) set"
morphisms set_of_rel rel_of_set by simp
setup_lifting type_definition_rel
lift_definition Rel :: "'a set => ('a * 'a) set => 'a rel" is "λ X R. Id_on X Un R" .
subsubsection ‹Constant definitions on relations›
hide_const (open) converse relcomp rtrancl Image
lift_definition member :: "'a * 'a => 'a rel => bool" is "Set.member" .
lift_definition converse :: "'a rel => 'a rel" is "Relation.converse" .
lift_definition union :: "'a rel => 'a rel => 'a rel" is "Set.union" .
lift_definition relcomp :: "'a rel => 'a rel => 'a rel" is "Relation.relcomp" .
lift_definition rtrancl :: "'a rel => 'a rel" is "Transitive_Closure.rtrancl" .
lift_definition Image :: "'a rel => 'a set => 'a set" is "Relation.Image" .
subsubsection ‹Code generation›
code_datatype Rel
lemma [code]:
"member (x, y) (Rel X R) = ((x = y ∧ x ∈ X) ∨ (x, y) ∈ R)"
by transfer auto
lemma [code]:
"converse (Rel X R) = Rel X (R¯)"
by transfer auto
lemma [code]:
"union (Rel X R) (Rel Y S) = Rel (X Un Y) (R Un S)"
by transfer auto
lemma [code]:
"relcomp (Rel X R) (Rel Y S) = Rel (X ∩ Y) (Set.filter (λ(x, y). y ∈ Y) R ∪ (Set.filter (λ(x, y). x ∈ X) S ∪ R O S))"
by transfer (auto simp add: Id_on_eqI relcomp.simps)
lemma [code]:
"rtrancl (Rel X R) = Rel UNIV (R⇧+)"
apply transfer
apply auto
apply (metis Id_on_iff Un_commute UNIV_I rtrancl_Un_separatorE rtrancl_eq_or_trancl)
by (metis in_rtrancl_UnI trancl_into_rtrancl)
lemma [code]:
"Image (Rel X R) S = (X Int S) Un (R `` S)"
by transfer auto
quickcheck_generator rel constructors: Rel
lemma
"member (x, (y :: nat)) (rtrancl (union R S)) ⟹ member (x, y) (union (rtrancl R) (rtrancl S))"
quickcheck[exhaustive, expect = counterexample]
oops
end