Theory TimerArray
theory TimerArray imports "../UNITY_Main" begin
type_synonym 'a state = "nat * 'a"
definition count :: "'a state => nat"
where "count s = fst s"
definition decr :: "('a state * 'a state) set"
where "decr = (UN n uu. {((Suc n, uu), (n,uu))})"
definition Timer :: "'a state program"
where "Timer = mk_total_program (UNIV, {decr}, UNIV)"
declare Timer_def [THEN def_prg_Init, simp]
declare count_def [simp] decr_def [simp]
lemma Timer_leadsTo_zero: "Timer ∈ UNIV leadsTo {s. count s = 0}"
apply (rule_tac f = count in lessThan_induct, simp)
apply (case_tac "m")
apply (force intro!: subset_imp_leadsTo)
apply (unfold Timer_def, ensures_tac "decr")
done
lemma Timer_preserves_snd [iff]: "Timer ∈ preserves snd"
apply (rule preservesI)
apply (unfold Timer_def, safety)
done
declare PLam_stable [simp]
lemma TimerArray_leadsTo_zero:
"finite I
⟹ (plam i: I. Timer) ∈ UNIV leadsTo {(s,uu). ∀i∈I. s i = 0}"
apply (erule_tac A'1 = "λi. lift_set i ({0} × UNIV)"
in finite_stable_completion [THEN leadsTo_weaken])
apply auto
prefer 2
apply (simp add: Timer_def, safety)
apply (rule_tac f = "sub i o fst" in lessThan_induct)
apply (case_tac "m")
apply (auto intro: subset_imp_leadsTo
simp add: insert_absorb
lift_set_Un_distrib [symmetric] lessThan_Suc [symmetric]
Times_Un_distrib1 [symmetric] Times_Diff_distrib1 [symmetric])
apply (rename_tac "n")
apply (rule PLam_leadsTo_Basis)
apply (auto simp add: lessThan_Suc [symmetric])
apply (unfold Timer_def mk_total_program_def, safety)
apply (rule_tac act = decr in totalize_transientI, auto)
done
end