Theory Handshake
theory Handshake imports "../UNITY_Main" begin
record state =
BB :: bool
NF :: nat
NG :: nat
definition
cmdF :: "(state*state) set"
where "cmdF = {(s,s'). s' = s (|NF:= Suc(NF s), BB:=False|) & BB s}"
definition
F :: "state program"
where "F = mk_total_program ({s. NF s = 0 & BB s}, {cmdF}, UNIV)"
definition
cmdG :: "(state*state) set"
where "cmdG = {(s,s'). s' = s (|NG:= Suc(NG s), BB:=True|) & ~ BB s}"
definition
G :: "state program"
where "G = mk_total_program ({s. NG s = 0 & BB s}, {cmdG}, UNIV)"
definition
invFG :: "state set"
where "invFG = {s. NG s <= NF s & NF s <= Suc (NG s) & (BB s = (NF s = NG s))}"
declare F_def [THEN def_prg_Init, simp]
G_def [THEN def_prg_Init, simp]
cmdF_def [THEN def_act_simp, simp]
cmdG_def [THEN def_act_simp, simp]
invFG_def [THEN def_set_simp, simp]
lemma invFG: "(F ⊔ G) ∈ Always invFG"
apply (rule AlwaysI)
apply force
apply (rule constrains_imp_Constrains [THEN StableI])
apply auto
apply (unfold F_def, safety)
apply (unfold G_def, safety)
done
lemma lemma2_1: "(F ⊔ G) ∈ ({s. NF s = k} - {s. BB s}) LeadsTo
({s. NF s = k} Int {s. BB s})"
apply (rule stable_Join_ensures1[THEN leadsTo_Basis, THEN leadsTo_imp_LeadsTo])
apply (unfold F_def, safety)
apply (unfold G_def, ensures_tac "cmdG")
done
lemma lemma2_2: "(F ⊔ G) ∈ ({s. NF s = k} Int {s. BB s}) LeadsTo
{s. k < NF s}"
apply (rule stable_Join_ensures2[THEN leadsTo_Basis, THEN leadsTo_imp_LeadsTo])
apply (unfold F_def, ensures_tac "cmdF")
apply (unfold G_def, safety)
done
lemma progress: "(F ⊔ G) ∈ UNIV LeadsTo {s. m < NF s}"
apply (rule LeadsTo_weaken_R)
apply (rule_tac f = "NF" and l = "Suc m" and B = "{}"
in GreaterThan_bounded_induct)
apply (auto intro!: lemma2_1 lemma2_2
intro: LeadsTo_Trans LeadsTo_Diff simp add: vimage_def)
done
end