Theory ELT
section‹Progress Under Allowable Sets›
theory ELT imports Project begin
inductive_set
elt :: "['a set set, 'a program] => ('a set * 'a set) set"
for CC :: "'a set set" and F :: "'a program"
where
Basis: "[| F ∈ A ensures B; A-B ∈ (insert {} CC) |] ==> (A,B) ∈ elt CC F"
| Trans: "[| (A,B) ∈ elt CC F; (B,C) ∈ elt CC F |] ==> (A,C) ∈ elt CC F"
| Union: "∀A∈S. (A,B) ∈ elt CC F ==> (Union S, B) ∈ elt CC F"
definition
givenBy :: "['a => 'b] => 'a set set"
where "givenBy f = range (%B. f-` B)"
definition
leadsETo :: "['a set, 'a set set, 'a set] => 'a program set"
("(3_/ leadsTo[_]/ _)" [80,0,80] 80)
where "leadsETo A CC B = {F. (A,B) ∈ elt CC F}"
definition
LeadsETo :: "['a set, 'a set set, 'a set] => 'a program set"
("(3_/ LeadsTo[_]/ _)" [80,0,80] 80)
where "LeadsETo A CC B =
{F. F ∈ (reachable F Int A) leadsTo[(%C. reachable F Int C) ` CC] B}"
lemma givenBy_id [simp]: "givenBy id = UNIV"
by (unfold givenBy_def, auto)
lemma givenBy_eq_all: "(givenBy v) = {A. ∀x∈A. ∀y. v x = v y ⟶ y ∈ A}"
apply (unfold givenBy_def, safe)
apply (rule_tac [2] x = "v ` _" in image_eqI, auto)
done
lemma givenByI: "(⋀x y. [| x ∈ A; v x = v y |] ==> y ∈ A) ==> A ∈ givenBy v"
by (subst givenBy_eq_all, blast)
lemma givenByD: "[| A ∈ givenBy v; x ∈ A; v x = v y |] ==> y ∈ A"
by (unfold givenBy_def, auto)
lemma empty_mem_givenBy [iff]: "{} ∈ givenBy v"
by (blast intro!: givenByI)
lemma givenBy_imp_eq_Collect: "A ∈ givenBy v ==> ∃P. A = {s. P(v s)}"
apply (rule_tac x = "λn. ∃s. v s = n ∧ s ∈ A" in exI)
apply (simp (no_asm_use) add: givenBy_eq_all)
apply blast
done
lemma Collect_mem_givenBy: "{s. P(v s)} ∈ givenBy v"
by (unfold givenBy_def, best)
lemma givenBy_eq_Collect: "givenBy v = {A. ∃P. A = {s. P(v s)}}"
by (blast intro: Collect_mem_givenBy givenBy_imp_eq_Collect)
lemma preserves_givenBy_imp_stable:
"[| F ∈ preserves v; D ∈ givenBy v |] ==> F ∈ stable D"
by (force simp add: preserves_subset_stable [THEN subsetD] givenBy_eq_Collect)
lemma givenBy_o_subset: "givenBy (w o v) <= givenBy v"
apply (simp (no_asm) add: givenBy_eq_Collect)
apply best
done
lemma givenBy_DiffI:
"[| A ∈ givenBy v; B ∈ givenBy v |] ==> A-B ∈ givenBy v"
apply (simp (no_asm_use) add: givenBy_eq_Collect)
apply safe
apply (rule_tac x = "%z. R z & ~ Q z" for R Q in exI)
unfolding set_diff_eq
apply auto
done
lemma leadsETo_Basis [intro]:
"[| F ∈ A ensures B; A-B ∈ insert {} CC |] ==> F ∈ A leadsTo[CC] B"
apply (unfold leadsETo_def)
apply (blast intro: elt.Basis)
done
lemma leadsETo_Trans:
"[| F ∈ A leadsTo[CC] B; F ∈ B leadsTo[CC] C |] ==> F ∈ A leadsTo[CC] C"
apply (unfold leadsETo_def)
apply (blast intro: elt.Trans)
done
lemma leadsETo_Un_duplicate:
"F ∈ A leadsTo[CC] (A' ∪ A') ⟹ F ∈ A leadsTo[CC] A'"
by (simp add: Un_ac)
lemma leadsETo_Un_duplicate2:
"F ∈ A leadsTo[CC] (A' ∪ C ∪ C) ==> F ∈ A leadsTo[CC] (A' Un C)"
by (simp add: Un_ac)
lemma leadsETo_Union:
"(⋀A. A ∈ S ⟹ F ∈ A leadsTo[CC] B) ⟹ F ∈ (⋃S) leadsTo[CC] B"
apply (unfold leadsETo_def)
apply (blast intro: elt.Union)
done
lemma leadsETo_UN:
"(⋀i. i ∈ I ⟹ F ∈ (A i) leadsTo[CC] B)
==> F ∈ (UN i:I. A i) leadsTo[CC] B"
apply (blast intro: leadsETo_Union)
done
lemma leadsETo_induct:
"[| F ∈ za leadsTo[CC] zb;
!!A B. [| F ∈ A ensures B; A-B ∈ insert {} CC |] ==> P A B;
!!A B C. [| F ∈ A leadsTo[CC] B; P A B; F ∈ B leadsTo[CC] C; P B C |]
==> P A C;
!!B S. ∀A∈S. F ∈ A leadsTo[CC] B & P A B ==> P (⋃S) B
|] ==> P za zb"
apply (unfold leadsETo_def)
apply (drule CollectD)
apply (erule elt.induct, blast+)
done
lemma leadsETo_mono: "CC' <= CC ==> (A leadsTo[CC'] B) <= (A leadsTo[CC] B)"
apply safe
apply (erule leadsETo_induct)
prefer 3 apply (blast intro: leadsETo_Union)
prefer 2 apply (blast intro: leadsETo_Trans)
apply blast
done
lemma leadsETo_Trans_Un:
"[| F ∈ A leadsTo[CC] B; F ∈ B leadsTo[DD] C |]
==> F ∈ A leadsTo[CC Un DD] C"
by (blast intro: leadsETo_mono [THEN subsetD] leadsETo_Trans)
lemma leadsETo_Union_Int:
"(!!A. A ∈ S ==> F ∈ (A Int C) leadsTo[CC] B)
==> F ∈ (⋃S Int C) leadsTo[CC] B"
apply (unfold leadsETo_def)
apply (simp only: Int_Union_Union)
apply (blast intro: elt.Union)
done
lemma leadsETo_Un:
"[| F ∈ A leadsTo[CC] C; F ∈ B leadsTo[CC] C |]
==> F ∈ (A Un B) leadsTo[CC] C"
using leadsETo_Union [of "{A, B}" F CC C] by auto
lemma single_leadsETo_I:
"(⋀x. x ∈ A ==> F ∈ {x} leadsTo[CC] B) ⟹ F ∈ A leadsTo[CC] B"
by (subst UN_singleton [symmetric], rule leadsETo_UN, blast)
lemma subset_imp_leadsETo: "A<=B ⟹ F ∈ A leadsTo[CC] B"
by (simp add: subset_imp_ensures [THEN leadsETo_Basis]
Diff_eq_empty_iff [THEN iffD2])
lemmas empty_leadsETo = empty_subsetI [THEN subset_imp_leadsETo, simp]
lemma leadsETo_weaken_R:
"[| F ∈ A leadsTo[CC] A'; A'<=B' |] ==> F ∈ A leadsTo[CC] B'"
by (blast intro: subset_imp_leadsETo leadsETo_Trans)
lemma leadsETo_weaken_L:
"[| F ∈ A leadsTo[CC] A'; B<=A |] ==> F ∈ B leadsTo[CC] A'"
by (blast intro: leadsETo_Trans subset_imp_leadsETo)
lemma leadsETo_Un_distrib:
"F ∈ (A Un B) leadsTo[CC] C =
(F ∈ A leadsTo[CC] C ∧ F ∈ B leadsTo[CC] C)"
by (blast intro: leadsETo_Un leadsETo_weaken_L)
lemma leadsETo_UN_distrib:
"F ∈ (UN i:I. A i) leadsTo[CC] B =
(∀i∈I. F ∈ (A i) leadsTo[CC] B)"
by (blast intro: leadsETo_UN leadsETo_weaken_L)
lemma leadsETo_Union_distrib:
"F ∈ (⋃S) leadsTo[CC] B = (∀A∈S. F ∈ A leadsTo[CC] B)"
by (blast intro: leadsETo_Union leadsETo_weaken_L)
lemma leadsETo_weaken:
"[| F ∈ A leadsTo[CC'] A'; B<=A; A'<=B'; CC' <= CC |]
==> F ∈ B leadsTo[CC] B'"
apply (drule leadsETo_mono [THEN subsetD], assumption)
apply (blast del: subsetCE
intro: leadsETo_weaken_R leadsETo_weaken_L leadsETo_Trans)
done
lemma leadsETo_givenBy:
"[| F ∈ A leadsTo[CC] A'; CC <= givenBy v |]
==> F ∈ A leadsTo[givenBy v] A'"
by (blast intro: leadsETo_weaken)
lemma leadsETo_Diff:
"[| F ∈ (A-B) leadsTo[CC] C; F ∈ B leadsTo[CC] C |]
==> F ∈ A leadsTo[CC] C"
by (blast intro: leadsETo_Un leadsETo_weaken)
lemma leadsETo_Un_Un:
"[| F ∈ A leadsTo[CC] A'; F ∈ B leadsTo[CC] B' |]
==> F ∈ (A Un B) leadsTo[CC] (A' Un B')"
by (blast intro: leadsETo_Un leadsETo_weaken_R)
lemma leadsETo_cancel2:
"[| F ∈ A leadsTo[CC] (A' Un B); F ∈ B leadsTo[CC] B' |]
==> F ∈ A leadsTo[CC] (A' Un B')"
by (blast intro: leadsETo_Un_Un subset_imp_leadsETo leadsETo_Trans)
lemma leadsETo_cancel1:
"[| F ∈ A leadsTo[CC] (B Un A'); F ∈ B leadsTo[CC] B' |]
==> F ∈ A leadsTo[CC] (B' Un A')"
apply (simp add: Un_commute)
apply (blast intro!: leadsETo_cancel2)
done
lemma leadsETo_cancel_Diff1:
"[| F ∈ A leadsTo[CC] (B Un A'); F ∈ (B-A') leadsTo[CC] B' |]
==> F ∈ A leadsTo[CC] (B' Un A')"
apply (rule leadsETo_cancel1)
prefer 2 apply assumption
apply simp_all
done
lemma e_psp_stable:
"[| F ∈ A leadsTo[CC] A'; F ∈ stable B; ∀C∈CC. C Int B ∈ CC |]
==> F ∈ (A Int B) leadsTo[CC] (A' Int B)"
apply (unfold stable_def)
apply (erule leadsETo_induct)
prefer 3 apply (blast intro: leadsETo_Union_Int)
prefer 2 apply (blast intro: leadsETo_Trans)
apply (rule leadsETo_Basis)
prefer 2 apply (force simp add: Diff_Int_distrib2 [symmetric])
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric]
Int_Un_distrib2 [symmetric])
apply (blast intro: transient_strengthen constrains_Int)
done
lemma e_psp_stable2:
"[| F ∈ A leadsTo[CC] A'; F ∈ stable B; ∀C∈CC. C Int B ∈ CC |]
==> F ∈ (B Int A) leadsTo[CC] (B Int A')"
by (simp (no_asm_simp) add: e_psp_stable Int_ac)
lemma e_psp:
"[| F ∈ A leadsTo[CC] A'; F ∈ B co B';
∀C∈CC. C Int B Int B' ∈ CC |]
==> F ∈ (A Int B') leadsTo[CC] ((A' Int B) Un (B' - B))"
apply (erule leadsETo_induct)
prefer 3 apply (blast intro: leadsETo_Union_Int)
apply (rule_tac [2] leadsETo_Un_duplicate2)
apply (erule_tac [2] leadsETo_cancel_Diff1)
prefer 2
apply (simp add: Int_Diff Diff_triv)
apply (blast intro: leadsETo_weaken_L dest: constrains_imp_subset)
apply (rule leadsETo_Basis)
apply (blast intro: psp_ensures)
apply (subgoal_tac "A Int B' - (Ba Int B Un (B' - B)) = (A - Ba) Int B Int B'")
apply auto
done
lemma e_psp2:
"[| F ∈ A leadsTo[CC] A'; F ∈ B co B';
∀C∈CC. C Int B Int B' ∈ CC |]
==> F ∈ (B' Int A) leadsTo[CC] ((B Int A') Un (B' - B))"
by (simp add: e_psp Int_ac)
lemma gen_leadsETo_imp_Join_leadsETo:
"[| F ∈ (A leadsTo[givenBy v] B); G ∈ preserves v;
F⊔G ∈ stable C |]
==> F⊔G ∈ ((C Int A) leadsTo[(%D. C Int D) ` givenBy v] B)"
apply (erule leadsETo_induct)
prefer 3
apply (subst Int_Union)
apply (blast intro: leadsETo_UN)
prefer 2
apply (blast intro: e_psp_stable2 [THEN leadsETo_weaken_L] leadsETo_Trans)
apply (rule leadsETo_Basis)
apply (auto simp add: Diff_eq_empty_iff [THEN iffD2]
Int_Diff ensures_def givenBy_eq_Collect)
prefer 3 apply (blast intro: transient_strengthen)
apply (drule_tac [2] P1 = P in preserves_subset_stable [THEN subsetD])
apply (drule_tac P1 = P in preserves_subset_stable [THEN subsetD])
apply (unfold stable_def)
apply (blast intro: constrains_Int [THEN constrains_weaken])+
done
lemma leadsETo_subset_leadsTo: "(A leadsTo[CC] B) <= (A leadsTo B)"
apply safe
apply (erule leadsETo_induct)
prefer 3 apply (blast intro: leadsTo_Union)
prefer 2 apply (blast intro: leadsTo_Trans, blast)
done
lemma leadsETo_UNIV_eq_leadsTo: "(A leadsTo[UNIV] B) = (A leadsTo B)"
apply safe
apply (erule leadsETo_subset_leadsTo [THEN subsetD])
apply (erule leadsTo_induct)
prefer 3 apply (blast intro: leadsETo_Union)
prefer 2 apply (blast intro: leadsETo_Trans, blast)
done
lemma LeadsETo_eq_leadsETo:
"A LeadsTo[CC] B =
{F. F ∈ (reachable F Int A) leadsTo[(%C. reachable F Int C) ` CC]
(reachable F Int B)}"
apply (unfold LeadsETo_def)
apply (blast dest: e_psp_stable2 intro: leadsETo_weaken)
done
lemma LeadsETo_Trans:
"[| F ∈ A LeadsTo[CC] B; F ∈ B LeadsTo[CC] C |]
==> F ∈ A LeadsTo[CC] C"
apply (simp add: LeadsETo_eq_leadsETo)
apply (blast intro: leadsETo_Trans)
done
lemma LeadsETo_Union:
"(⋀A. A ∈ S ⟹ F ∈ A LeadsTo[CC] B) ⟹ F ∈ (⋃S) LeadsTo[CC] B"
apply (simp add: LeadsETo_def)
apply (subst Int_Union)
apply (blast intro: leadsETo_UN)
done
lemma LeadsETo_UN:
"(⋀i. i ∈ I ⟹ F ∈ (A i) LeadsTo[CC] B)
⟹ F ∈ (UN i:I. A i) LeadsTo[CC] B"
apply (blast intro: LeadsETo_Union)
done
lemma LeadsETo_Un:
"[| F ∈ A LeadsTo[CC] C; F ∈ B LeadsTo[CC] C |]
==> F ∈ (A Un B) LeadsTo[CC] C"
using LeadsETo_Union [of "{A, B}" F CC C] by auto
lemma single_LeadsETo_I:
"(⋀s. s ∈ A ==> F ∈ {s} LeadsTo[CC] B) ⟹ F ∈ A LeadsTo[CC] B"
by (subst UN_singleton [symmetric], rule LeadsETo_UN, blast)
lemma subset_imp_LeadsETo:
"A <= B ⟹ F ∈ A LeadsTo[CC] B"
apply (simp (no_asm) add: LeadsETo_def)
apply (blast intro: subset_imp_leadsETo)
done
lemmas empty_LeadsETo = empty_subsetI [THEN subset_imp_LeadsETo]
lemma LeadsETo_weaken_R:
"[| F ∈ A LeadsTo[CC] A'; A' <= B' |] ==> F ∈ A LeadsTo[CC] B'"
apply (simp add: LeadsETo_def)
apply (blast intro: leadsETo_weaken_R)
done
lemma LeadsETo_weaken_L:
"[| F ∈ A LeadsTo[CC] A'; B <= A |] ==> F ∈ B LeadsTo[CC] A'"
apply (simp add: LeadsETo_def)
apply (blast intro: leadsETo_weaken_L)
done
lemma LeadsETo_weaken:
"[| F ∈ A LeadsTo[CC'] A';
B <= A; A' <= B'; CC' <= CC |]
==> F ∈ B LeadsTo[CC] B'"
apply (simp (no_asm_use) add: LeadsETo_def)
apply (blast intro: leadsETo_weaken)
done
lemma LeadsETo_subset_LeadsTo: "(A LeadsTo[CC] B) <= (A LeadsTo B)"
apply (unfold LeadsETo_def LeadsTo_def)
apply (blast intro: leadsETo_subset_leadsTo [THEN subsetD])
done
lemma reachable_ensures:
"F ∈ A ensures B ⟹ F ∈ (reachable F Int A) ensures B"
apply (rule stable_ensures_Int [THEN ensures_weaken_R], auto)
done
lemma lel_lemma:
"F ∈ A leadsTo B ⟹ F ∈ (reachable F Int A) leadsTo[Pow(reachable F)] B"
apply (erule leadsTo_induct)
apply (blast intro: reachable_ensures)
apply (blast dest: e_psp_stable2 intro: leadsETo_Trans leadsETo_weaken_L)
apply (subst Int_Union)
apply (blast intro: leadsETo_UN)
done
lemma LeadsETo_UNIV_eq_LeadsTo: "(A LeadsTo[UNIV] B) = (A LeadsTo B)"
apply safe
apply (erule LeadsETo_subset_LeadsTo [THEN subsetD])
apply (unfold LeadsETo_def LeadsTo_def)
apply (blast intro: lel_lemma [THEN leadsETo_weaken])
done
context Extend
begin
lemma givenBy_o_eq_extend_set:
"givenBy (v o f) = extend_set h ` (givenBy v)"
apply (simp add: givenBy_eq_Collect)
apply (rule equalityI, best)
apply blast
done
lemma givenBy_eq_extend_set: "givenBy f = range (extend_set h)"
by (simp add: givenBy_eq_Collect, best)
lemma extend_set_givenBy_I:
"D ∈ givenBy v ==> extend_set h D ∈ givenBy (v o f)"
apply (simp (no_asm_use) add: givenBy_eq_all, blast)
done
lemma leadsETo_imp_extend_leadsETo:
"F ∈ A leadsTo[CC] B
==> extend h F ∈ (extend_set h A) leadsTo[extend_set h ` CC]
(extend_set h B)"
apply (erule leadsETo_induct)
apply (force intro: subset_imp_ensures
simp add: extend_ensures extend_set_Diff_distrib [symmetric])
apply (blast intro: leadsETo_Trans)
apply (simp add: leadsETo_UN extend_set_Union)
done
lemma Join_project_ensures_strong:
"[| project h C G ∉ transient (project_set h C Int (A-B)) |
project_set h C Int (A - B) = {};
extend h F⊔G ∈ stable C;
F⊔project h C G ∈ (project_set h C Int A) ensures B |]
==> extend h F⊔G ∈ (C Int extend_set h A) ensures (extend_set h B)"
apply (subst Int_extend_set_lemma [symmetric])
apply (rule Join_project_ensures)
apply (auto simp add: Int_Diff)
done
lemma pli_lemma:
"[| extend h F⊔G ∈ stable C;
F⊔project h C G
∈ project_set h C Int project_set h A leadsTo project_set h B |]
==> F⊔project h C G
∈ project_set h C Int project_set h A leadsTo
project_set h C Int project_set h B"
apply (rule psp_stable2 [THEN leadsTo_weaken_L])
apply (auto simp add: project_stable_project_set extend_stable_project_set)
done
lemma project_leadsETo_I_lemma:
"[| extend h F⊔G ∈ stable C;
extend h F⊔G ∈
(C Int A) leadsTo[(%D. C Int D)`givenBy f] B |]
==> F⊔project h C G
∈ (project_set h C Int project_set h (C Int A)) leadsTo (project_set h B)"
apply (erule leadsETo_induct)
prefer 3
apply (simp only: Int_UN_distrib project_set_Union)
apply (blast intro: leadsTo_UN)
prefer 2 apply (blast intro: leadsTo_Trans pli_lemma)
apply (simp add: givenBy_eq_extend_set)
apply (rule leadsTo_Basis)
apply (blast intro: ensures_extend_set_imp_project_ensures)
done
lemma project_leadsETo_I:
"extend h F⊔G ∈ (extend_set h A) leadsTo[givenBy f] (extend_set h B)
⟹ F⊔project h UNIV G ∈ A leadsTo B"
apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken], auto)
done
lemma project_LeadsETo_I:
"extend h F⊔G ∈ (extend_set h A) LeadsTo[givenBy f] (extend_set h B)
⟹ F⊔project h (reachable (extend h F⊔G)) G
∈ A LeadsTo B"
apply (simp (no_asm_use) add: LeadsTo_def LeadsETo_def)
apply (rule project_leadsETo_I_lemma [THEN leadsTo_weaken])
apply (auto simp add: project_set_reachable_extend_eq [symmetric])
done
lemma projecting_leadsTo:
"projecting (λG. UNIV) h F
(extend_set h A leadsTo[givenBy f] extend_set h B)
(A leadsTo B)"
apply (unfold projecting_def)
apply (force dest: project_leadsETo_I)
done
lemma projecting_LeadsTo:
"projecting (λG. reachable (extend h F⊔G)) h F
(extend_set h A LeadsTo[givenBy f] extend_set h B)
(A LeadsTo B)"
apply (unfold projecting_def)
apply (force dest: project_LeadsETo_I)
done
end
end