Theory THF_Arith
theory THF_Arith
imports Complex_Main
begin
consts
is_int :: "'a ⇒ bool"
is_rat :: "'a ⇒ bool"
overloading rat_is_int ≡ "is_int :: rat ⇒ bool"
begin
definition "rat_is_int (q::rat) ⟷ (∃n::int. q = of_int n)"
end
overloading real_is_int ≡ "is_int :: real ⇒ bool"
begin
definition "real_is_int (x::real) ⟷ x ∈ ℤ"
end
overloading real_is_rat ≡ "is_rat :: real ⇒ bool"
begin
definition "real_is_rat (x::real) ⟷ x ∈ ℚ"
end
consts
to_int :: "'a ⇒ int"
to_rat :: "'a ⇒ rat"
to_real :: "'a ⇒ real"
overloading rat_to_int ≡ "to_int :: rat ⇒ int"
begin
definition "rat_to_int (q::rat) = ⌊q⌋"
end
overloading real_to_int ≡ "to_int :: real ⇒ int"
begin
definition "real_to_int (x::real) = ⌊x⌋"
end
overloading int_to_rat ≡ "to_rat :: int ⇒ rat"
begin
definition "int_to_rat (n::int) = (of_int n::rat)"
end
overloading real_to_rat ≡ "to_rat :: real ⇒ rat"
begin
definition "real_to_rat (x::real) = (inv of_rat x::rat)"
end
overloading int_to_real ≡ "to_real :: int ⇒ real"
begin
definition "int_to_real (n::int) = real_of_int n"
end
overloading rat_to_real ≡ "to_real :: rat ⇒ real"
begin
definition "rat_to_real (x::rat) = (of_rat x::real)"
end
declare
rat_is_int_def [simp]
real_is_int_def [simp]
real_is_rat_def [simp]
rat_to_int_def [simp]
real_to_int_def [simp]
int_to_rat_def [simp]
real_to_rat_def [simp]
int_to_real_def [simp]
rat_to_real_def [simp]
lemma to_rat_is_int [intro, simp]: "is_int (to_rat (n::int))"
by (metis int_to_rat_def rat_is_int_def)
lemma to_real_is_int [intro, simp]: "is_int (to_real (n::int))"
by (metis Ints_of_int int_to_real_def real_is_int_def)
lemma to_real_is_rat [intro, simp]: "is_rat (to_real (q::rat))"
by (metis Rats_of_rat rat_to_real_def real_is_rat_def)
lemma inj_of_rat [intro, simp]: "inj (of_rat::rat⇒real)"
by (metis injI of_rat_eq_iff)
end