Theory HOL-SPARK-Examples.Greatest_Common_Divisor
theory Greatest_Common_Divisor
imports "HOL-SPARK.SPARK"
begin
spark_proof_functions
gcd = "gcd :: int ⇒ int ⇒ int"
spark_open ‹greatest_common_divisor/g_c_d›
spark_vc procedure_g_c_d_4
proof -
from ‹0 < d› have "0 ≤ c mod d" by (rule pos_mod_sign)
with ‹0 ≤ c› ‹0 < d› ‹c - c sdiv d * d ≠ 0› show ?C1
by (simp add: sdiv_pos_pos minus_div_mult_eq_mod [symmetric])
next
from ‹0 ≤ c› ‹0 < d› ‹gcd c d = gcd m n› show ?C2
by (simp add: sdiv_pos_pos minus_div_mult_eq_mod [symmetric] gcd_non_0_int)
qed
spark_vc procedure_g_c_d_11
proof -
from ‹0 ≤ c› ‹0 < d› ‹c - c sdiv d * d = 0›
have "d dvd c"
by (auto simp add: sdiv_pos_pos dvd_def ac_simps)
with ‹0 < d› ‹gcd c d = gcd m n› show ?C1
by simp
qed
spark_end
end