Theory Quotient_Rat

(*  Title:      HOL/Quotient_Examples/Quotient_Rat.thy
    Author:     Cezary Kaliszyk

Rational numbers defined with the quotient package, based on 'HOL/Rat.thy' by Makarius.
*)

theory Quotient_Rat imports HOL.Archimedean_Field
  "HOL-Library.Quotient_Product"
begin

definition
  ratrel :: "(int × int)  (int × int)  bool" (infix "" 50)
where
  [simp]: "x  y  snd x  0  snd y  0  fst x * snd y = fst y * snd x"

lemma ratrel_equivp:
  "part_equivp ratrel"
proof (auto intro!: part_equivpI reflpI sympI transpI exI[of _ "1 :: int"])
  fix a b c d e f :: int
  assume nz: "d  0" "b  0"
  assume y: "a * d = c * b"
  assume x: "c * f = e * d"
  then have "c * b * f = e * d * b" using nz by simp
  then have "a * d * f = e * d * b" using y by simp
  then show "a * f = e * b" using nz by simp
qed

quotient_type rat = "int × int" / partial: ratrel
 using ratrel_equivp .

instantiation rat :: "{zero, one, plus, uminus, minus, times, ord, abs, sgn}"
begin

quotient_definition
  "0 :: rat" is "(0::int, 1::int)" by simp

quotient_definition
  "1 :: rat" is "(1::int, 1::int)" by simp

fun times_rat_raw where
  "times_rat_raw (a :: int, b :: int) (c, d) = (a * c, b * d)"

quotient_definition
  "((*)) :: (rat  rat  rat)" is times_rat_raw by (auto simp add: mult.assoc mult.left_commute)

fun plus_rat_raw where
  "plus_rat_raw (a :: int, b :: int) (c, d) = (a * d + c * b, b * d)"

quotient_definition
  "(+) :: (rat  rat  rat)" is plus_rat_raw 
  by (auto simp add: mult.commute mult.left_commute int_distrib(2))

fun uminus_rat_raw where
  "uminus_rat_raw (a :: int, b :: int) = (-a, b)"

quotient_definition
  "(uminus :: (rat  rat))" is "uminus_rat_raw" by fastforce

definition
  minus_rat_def: "a - b = a + (-b::rat)"

fun le_rat_raw where
  "le_rat_raw (a :: int, b) (c, d)  (a * d) * (b * d)  (c * b) * (b * d)"

quotient_definition
  "(≤) :: rat  rat  bool" is "le_rat_raw"
proof -
  {
    fix a b c d e f g h :: int
    assume "a * f * (b * f)  e * b * (b * f)"
    then have le: "a * f * b * f  e * b * b * f" by simp
    assume nz: "b  0" "d  0" "f  0" "h  0"
    then have b2: "b * b > 0"
      by (metis linorder_neqE_linordered_idom mult_eq_0_iff not_square_less_zero)
    have f2: "f * f > 0" using nz(3)
      by (metis linorder_neqE_linordered_idom mult_eq_0_iff not_square_less_zero)
    assume eq: "a * d = c * b" "e * h = g * f"
    have "a * f * b * f * d * d  e * b * b * f * d * d" using le nz(2)
      by (metis linorder_le_cases mult_right_mono mult_right_mono_neg)
    then have "c * f * f * d * (b * b)  e * f * d * d * (b * b)" using eq
      by (metis (no_types) mult.assoc mult.commute)
    then have "c * f * f * d  e * f * d * d" using b2
      by (metis leD linorder_le_less_linear mult_strict_right_mono)
    then have "c * f * f * d * h * h  e * f * d * d * h * h" using nz(4)
      by (metis linorder_le_cases mult_right_mono mult_right_mono_neg)
    then have "c * h * (d * h) * (f * f)  g * d * (d * h) * (f * f)" using eq
      by (metis (no_types) mult.assoc mult.commute)
    then have "c * h * (d * h)  g * d * (d * h)" using f2
      by (metis leD linorder_le_less_linear mult_strict_right_mono)
  }
  then show "x y xa ya. x  y  xa  ya  le_rat_raw x xa = le_rat_raw y ya" by auto
qed

definition
  less_rat_def: "(z::rat) < w = (z  w  z  w)"

definition
  rabs_rat_def: "¦i::rat¦ = (if i < 0 then - i else i)"

definition
  sgn_rat_def: "sgn (i::rat) = (if i = 0 then 0 else if 0 < i then 1 else - 1)"

instance ..

end

definition
  Fract_raw :: "int  int  (int × int)"
where [simp]: "Fract_raw a b = (if b = 0 then (0, 1) else (a, b))"

quotient_definition "Fract :: int  int  rat" is
  Fract_raw by simp

lemmas [simp] = Respects_def

(* FIXME: (partiality_)descending raises exception TYPE_MATCH

instantiation rat :: comm_ring_1
begin

instance proof
  fix a b c :: rat
  show "a * b * c = a * (b * c)"
    by partiality_descending auto
  show "a * b = b * a"
    by partiality_descending auto
  show "1 * a = a"
    by partiality_descending auto
  show "a + b + c = a + (b + c)"
    by partiality_descending (auto simp add: mult.commute distrib_left)
  show "a + b = b + a"
    by partiality_descending auto
  show "0 + a = a"
    by partiality_descending auto
  show "- a + a = 0"
    by partiality_descending auto
  show "a - b = a + - b"
    by (simp add: minus_rat_def)
  show "(a + b) * c = a * c + b * c"
    by partiality_descending (auto simp add: mult.commute distrib_left)
  show "(0 :: rat) ≠ (1 :: rat)"
    by partiality_descending auto
qed

end

lemma add_one_Fract: "1 + Fract (int k) 1 = Fract (1 + int k) 1"
  by descending auto

lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
  apply (induct k)
  apply (simp add: zero_rat_def Fract_def)
  apply (simp add: add_one_Fract)
  done

lemma of_int_rat: "of_int k = Fract k 1"
  apply (cases k rule: int_diff_cases)
  apply (auto simp add: of_nat_rat minus_rat_def)
  apply descending
  apply auto
  done

instantiation rat :: field begin

fun rat_inverse_raw where
  "rat_inverse_raw (a :: int, b :: int) = (if a = 0 then (0, 1) else (b, a))"

quotient_definition
  "inverse :: rat ⇒ rat" is rat_inverse_raw by (force simp add: mult.commute)

definition
  divide_rat_def: "q / r = q * inverse (r::rat)"

instance proof
  fix q :: rat
  assume "q ≠ 0"
  then show "inverse q * q = 1"
    by partiality_descending auto
next
  fix q r :: rat
  show "q / r = q * inverse r" by (simp add: divide_rat_def)
next
  show "inverse 0 = (0::rat)" by partiality_descending auto
qed

end

instantiation rat :: linorder
begin

instance proof
  fix q r s :: rat
  {
    assume "q ≤ r" and "r ≤ s"
    then show "q ≤ s"
    proof (partiality_descending, auto simp add: mult.assoc[symmetric])
      fix a b c d e f :: int
      assume nz: "b ≠ 0" "d ≠ 0" "f ≠ 0"
      then have d2: "d * d > 0"
        by (metis linorder_neqE_linordered_idom mult_eq_0_iff not_square_less_zero)
      assume le: "a * d * b * d ≤ c * b * b * d" "c * f * d * f ≤ e * d * d * f"
      then have a: "a * d * b * d * f * f ≤ c * b * b * d * f * f" using nz(3)
        by (metis linorder_le_cases mult_right_mono mult_right_mono_neg)
      have "c * f * d * f * b * b ≤ e * d * d * f * b * b" using nz(1) le
        by (metis linorder_le_cases mult_right_mono mult_right_mono_neg)
      then have "a * f * b * f * (d * d) ≤ e * b * b * f * (d * d)" using a
        by (simp add: algebra_simps)
      then show "a * f * b * f ≤ e * b * b * f" using d2
        by (metis leD linorder_le_less_linear mult_strict_right_mono)
    qed
  next
    assume "q ≤ r" and "r ≤ q"
    then show "q = r"
      apply (partiality_descending, auto)
      apply (case_tac "b > 0", case_tac [!] "ba > 0")
      apply simp_all
      done
  next
    show "q ≤ q" by partiality_descending auto
    show "(q < r) = (q ≤ r ∧ ¬ r ≤ q)"
      unfolding less_rat_def
      by partiality_descending (auto simp add: le_less mult.commute)
    show "q ≤ r ∨ r ≤ q"
      by partiality_descending (auto simp add: mult.commute linorder_linear)
  }
qed

end

instance rat :: archimedean_field
proof
  fix q r s :: rat
  show "q ≤ r ==> s + q ≤ s + r"
  proof (partiality_descending, auto simp add: algebra_simps, simp add: mult.assoc[symmetric])
    fix a b c d e :: int
    assume "e ≠ 0"
    then have e2: "e * e > 0"
      by (metis linorder_neqE_linordered_idom mult_eq_0_iff not_square_less_zero)
      assume "a * b * d * d ≤ b * b * c * d"
      then show "a * b * d * d * e * e * e * e ≤ b * b * c * d * e * e * e * e"
        using e2 by (metis mult_left_mono mult.commute linorder_le_cases
          mult_left_mono_neg)
    qed
  show "q < r ==> 0 < s ==> s * q < s * r" unfolding less_rat_def
    proof (partiality_descending, auto simp add: algebra_simps, simp add: mult.assoc[symmetric])
    fix a b c d e f :: int
    assume a: "e ≠ 0" "f ≠ 0" "0 ≤ e * f" "a * b * d * d ≤ b * b * c * d"
    have "a * b * d * d * (e * f) ≤ b * b * c * d * (e * f)" using a
      by (simp add: mult_right_mono)
    then show "a * b * d * d * e * f * f * f ≤ b * b * c * d * e * f * f * f"
      by (simp add: mult.assoc[symmetric]) (metis a(3) mult_left_mono
        mult.commute mult_left_mono_neg zero_le_mult_iff)
  qed
  show "∃z. r ≤ of_int z"
    unfolding of_int_rat
  proof (partiality_descending, auto)
    fix a b :: int
    assume "b ≠ 0"
    then have "a * b ≤ (a div b + 1) * b * b"
      by (metis mult.commute nonzero_mult_div_cancel_left less_int_def linorder_le_cases zdiv_mono1 zdiv_mono1_neg zle_add1_eq_le)
    then show "∃z::int. a * b ≤ z * b * b" by auto
  qed
qed
*)

end