Theory Lift_FSet
section ‹Lifting and transfer with a finite set type›
theory Lift_FSet
imports Main
begin
subsection ‹Equivalence relation and quotient type definition›
definition list_eq :: "'a list ⇒ 'a list ⇒ bool"
where [simp]: "list_eq xs ys ⟷ set xs = set ys"
lemma reflp_list_eq: "reflp list_eq"
unfolding reflp_def by simp
lemma symp_list_eq: "symp list_eq"
unfolding symp_def by simp
lemma transp_list_eq: "transp list_eq"
unfolding transp_def by simp
lemma equivp_list_eq: "equivp list_eq"
by (intro equivpI reflp_list_eq symp_list_eq transp_list_eq)
context includes lifting_syntax
begin
lemma list_eq_transfer [transfer_rule]:
assumes [transfer_rule]: "bi_unique A"
shows "(list_all2 A ===> list_all2 A ===> (=)) list_eq list_eq"
unfolding list_eq_def [abs_def] by transfer_prover
quotient_type 'a fset = "'a list" / "list_eq" parametric list_eq_transfer
by (rule equivp_list_eq)
subsection ‹Lifted constant definitions›
lift_definition fnil :: "'a fset" ("{||}") is "[]" parametric list.ctr_transfer(1) .
lift_definition fcons :: "'a ⇒ 'a fset ⇒ 'a fset" is Cons parametric list.ctr_transfer(2)
by simp
lift_definition fappend :: "'a fset ⇒ 'a fset ⇒ 'a fset" is append parametric append_transfer
by simp
lift_definition fmap :: "('a ⇒ 'b) ⇒ 'a fset ⇒ 'b fset" is map parametric list.map_transfer
by simp
lift_definition ffilter :: "('a ⇒ bool) ⇒ 'a fset ⇒ 'a fset" is filter parametric filter_transfer
by simp
lift_definition fset :: "'a fset ⇒ 'a set" is set parametric list.set_transfer
by simp
text ‹Constants with nested types (like concat) yield a more
complicated proof obligation.›
lemma list_all2_cr_fset:
"list_all2 cr_fset xs ys ⟷ map abs_fset xs = ys"
unfolding cr_fset_def
apply safe
apply (erule list_all2_induct, simp, simp)
apply (simp add: list_all2_map2 List.list_all2_refl)
done
lemma abs_fset_eq_iff: "abs_fset xs = abs_fset ys ⟷ list_eq xs ys"
using Quotient_rel [OF Quotient_fset] by simp
lift_definition fconcat :: "'a fset fset ⇒ 'a fset" is concat parametric concat_transfer
proof (simp only: fset.pcr_cr_eq)
fix xss yss :: "'a list list"
assume "(list_all2 cr_fset OO list_eq OO (list_all2 cr_fset)¯¯) xss yss"
then obtain uss vss where
"list_all2 cr_fset xss uss" and "list_eq uss vss" and
"list_all2 cr_fset yss vss" by clarsimp
hence "list_eq (map abs_fset xss) (map abs_fset yss)"
unfolding list_all2_cr_fset by simp
thus "list_eq (concat xss) (concat yss)"
apply (simp add: set_eq_iff image_def)
apply safe
apply (rename_tac xs, drule_tac x="abs_fset xs" in spec)
apply (drule iffD1, fast, clarsimp simp add: abs_fset_eq_iff, fast)
apply (rename_tac xs, drule_tac x="abs_fset xs" in spec)
apply (drule iffD2, fast, clarsimp simp add: abs_fset_eq_iff, fast)
done
qed
lemma member_transfer:
assumes [transfer_rule]: "bi_unique A"
shows "(A ===> list_all2 A ===> (=)) (λx xs. x ∈ set xs) (λx xs. x ∈ set xs)"
by transfer_prover
end
syntax
"_insert_fset" :: "args => 'a fset" ("{|(_)|}")
translations
"{|x, xs|}" == "CONST fcons x {|xs|}"
"{|x|}" == "CONST fcons x {||}"
lift_definition fmember :: "'a ⇒ 'a fset ⇒ bool" (infix "|∈|" 50) is "λx xs. x ∈ set xs"
parametric member_transfer by simp
abbreviation notin_fset :: "'a ⇒ 'a fset ⇒ bool" (infix "|∉|" 50) where
"x |∉| S ≡ ¬ (x |∈| S)"
lemma fmember_fmap[simp]: "a |∈| fmap f X = (∃b. b |∈| X ∧ a = f b)"
by transfer auto
text ‹We can export code:›
export_code fnil fcons fappend fmap ffilter fset fmember in SML file_prefix fset
subsection ‹Using transfer with type ‹fset››
text ‹The correspondence relation ‹cr_fset› can only relate
‹list› and ‹fset› types with the same element type.
To relate nested types like ‹'a list list› and
‹'a fset fset›, we define a parameterized version of the
correspondence relation, ‹pcr_fset›.›
thm pcr_fset_def
subsection ‹Transfer examples›
text ‹The ‹transfer› method replaces equality on ‹fset› with the ‹list_eq› relation on lists, which is
logically equivalent.›
lemma "fmap f (fmap g xs) = fmap (f ∘ g) xs"
apply transfer
apply simp
done
text ‹The ‹transfer'› variant can replace equality on ‹fset› with equality on ‹list›, which is logically stronger
but sometimes more convenient.›
lemma "fmap f (fmap g xs) = fmap (f ∘ g) xs"
using map_map [Transfer.transferred] .
lemma "ffilter p (fmap f xs) = fmap f (ffilter (p ∘ f) xs)"
using filter_map [Transfer.transferred] .
lemma "ffilter p (ffilter q xs) = ffilter (λx. q x ∧ p x) xs"
using filter_filter [Transfer.transferred] .
lemma "fset (fcons x xs) = insert x (fset xs)"
using list.set(2) [Transfer.transferred] .
lemma "fset (fappend xs ys) = fset xs ∪ fset ys"
using set_append [Transfer.transferred] .
lemma "fset (fconcat xss) = (⋃xs∈fset xss. fset xs)"
using set_concat [Transfer.transferred] .
lemma "∀x∈fset xs. f x = g x ⟹ fmap f xs = fmap g xs"
apply transfer
apply (simp cong: map_cong del: set_map)
done
lemma "fnil = fconcat xss ⟷ (∀xs∈fset xss. xs = fnil)"
apply transfer
apply simp
done
lemma "fconcat (fmap (λx. fcons x fnil) xs) = xs"
apply transfer
apply simp
done
lemma concat_map_concat: "concat (map concat xsss) = concat (concat xsss)"
by (induct xsss, simp_all)
lemma "fconcat (fmap fconcat xss) = fconcat (fconcat xss)"
using concat_map_concat [Transfer.transferred] .
end