Theory Lift_DList

(*  Title:      HOL/Quotient_Examples/Lift_DList.thy
    Author:     Ondrej Kuncar
*)

theory Lift_DList
imports Main
begin

subsection ‹The type of distinct lists›

typedef 'a dlist = "{xs::'a list. distinct xs}"
  morphisms list_of_dlist Abs_dlist
proof
  show "[]  {xs. distinct xs}" by simp
qed

setup_lifting type_definition_dlist

text ‹Fundamental operations:›

lift_definition empty :: "'a dlist" is "[]"
by simp
  
lift_definition insert :: "'a  'a dlist  'a dlist" is List.insert
by simp

lift_definition remove :: "'a  'a dlist  'a dlist" is List.remove1
by simp

lift_definition map :: "('a  'b)  'a dlist  'b dlist" is "λf. remdups o List.map f"
by simp

lift_definition filter :: "('a  bool)  'a dlist  'a dlist" is List.filter
by simp

text ‹Derived operations:›

lift_definition null :: "'a dlist  bool" is List.null .

lift_definition member :: "'a dlist  'a  bool" is List.member .

lift_definition length :: "'a dlist  nat" is List.length .

lift_definition fold :: "('a  'b  'b)  'a dlist  'b  'b" is List.fold .

lift_definition foldr :: "('a  'b  'b)  'a dlist  'b  'b" is List.foldr .

lift_definition concat :: "'a dlist dlist  'a dlist" is "remdups o List.concat" by auto

text ‹We can export code:›

export_code empty insert remove map filter null member length fold foldr concat in SML
  file_prefix dlist

end