Theory HOL.BNF_Cardinal_Arithmetic
section ‹Cardinal Arithmetic as Needed by Bounded Natural Functors›
theory BNF_Cardinal_Arithmetic
imports BNF_Cardinal_Order_Relation
begin
lemma dir_image: "⟦⋀x y. (f x = f y) = (x = y); Card_order r⟧ ⟹ r =o dir_image r f"
by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def)
lemma card_order_dir_image:
assumes bij: "bij f" and co: "card_order r"
shows "card_order (dir_image r f)"
proof -
have "Field (dir_image r f) = UNIV"
using assms card_order_on_Card_order[of UNIV r]
unfolding bij_def dir_image_Field by auto
moreover from bij have "⋀x y. (f x = f y) = (x = y)"
unfolding bij_def inj_on_def by auto
with co have "Card_order (dir_image r f)"
using card_order_on_Card_order Card_order_ordIso2[OF _ dir_image] by blast
ultimately show ?thesis by auto
qed
lemma ordIso_refl: "Card_order r ⟹ r =o r"
by (rule card_order_on_ordIso)
lemma ordLeq_refl: "Card_order r ⟹ r ≤o r"
by (rule ordIso_imp_ordLeq, rule card_order_on_ordIso)
lemma card_of_ordIso_subst: "A = B ⟹ |A| =o |B|"
by (simp only: ordIso_refl card_of_Card_order)
lemma Field_card_order: "card_order r ⟹ Field r = UNIV"
using card_order_on_Card_order[of UNIV r] by simp
subsection ‹Zero›
definition czero where
"czero = card_of {}"
lemma czero_ordIso: "czero =o czero"
using card_of_empty_ordIso by (simp add: czero_def)
lemma card_of_ordIso_czero_iff_empty:
"|A| =o (czero :: 'b rel) ⟷ A = ({} :: 'a set)"
unfolding czero_def by (rule iffI[OF card_of_empty2]) (auto simp: card_of_refl card_of_empty_ordIso)
abbreviation Cnotzero where
"Cnotzero (r :: 'a rel) ≡ ¬(r =o (czero :: 'a rel)) ∧ Card_order r"
lemma Cnotzero_imp_not_empty: "Cnotzero r ⟹ Field r ≠ {}"
unfolding Card_order_iff_ordIso_card_of czero_def by force
lemma czeroI:
"⟦Card_order r; Field r = {}⟧ ⟹ r =o czero"
using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast
lemma czeroE:
"r =o czero ⟹ Field r = {}"
unfolding czero_def
by (drule card_of_cong) (simp only: Field_card_of card_of_empty2)
lemma Cnotzero_mono:
"⟦Cnotzero r; Card_order q; r ≤o q⟧ ⟹ Cnotzero q"
by (force intro: czeroI dest: card_of_mono2 card_of_empty3 czeroE)
subsection ‹(In)finite cardinals›
definition cinfinite where
"cinfinite r ≡ (¬ finite (Field r))"
abbreviation Cinfinite where
"Cinfinite r ≡ cinfinite r ∧ Card_order r"
definition cfinite where
"cfinite r = finite (Field r)"
abbreviation Cfinite where
"Cfinite r ≡ cfinite r ∧ Card_order r"
lemma Cfinite_ordLess_Cinfinite: "⟦Cfinite r; Cinfinite s⟧ ⟹ r <o s"
unfolding cfinite_def cinfinite_def
by (blast intro: finite_ordLess_infinite card_order_on_well_order_on)
lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
lemma natLeq_cinfinite: "cinfinite natLeq"
unfolding cinfinite_def Field_natLeq by (rule infinite_UNIV_nat)
lemma natLeq_Cinfinite: "Cinfinite natLeq"
using natLeq_cinfinite natLeq_Card_order by simp
lemma natLeq_ordLeq_cinfinite:
assumes inf: "Cinfinite r"
shows "natLeq ≤o r"
proof -
from inf have "natLeq ≤o |Field r|" unfolding cinfinite_def
using infinite_iff_natLeq_ordLeq by blast
also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric)
finally show ?thesis .
qed
lemma cinfinite_not_czero: "cinfinite r ⟹ ¬ (r =o (czero :: 'a rel))"
unfolding cinfinite_def by (cases "Field r = {}") (auto dest: czeroE)
lemma Cinfinite_Cnotzero: "Cinfinite r ⟹ Cnotzero r"
using cinfinite_not_czero by auto
lemma Cinfinite_cong: "⟦r1 =o r2; Cinfinite r1⟧ ⟹ Cinfinite r2"
using Card_order_ordIso2[of r1 r2] unfolding cinfinite_def ordIso_iff_ordLeq
by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
lemma cinfinite_mono: "⟦r1 ≤o r2; cinfinite r1⟧ ⟹ cinfinite r2"
unfolding cinfinite_def by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
lemma regularCard_ordIso:
assumes "k =o k'" and "Cinfinite k" and "regularCard k"
shows "regularCard k'"
proof-
have "stable k" using assms cinfinite_def regularCard_stable by blast
hence "stable k'" using assms stable_ordIso1 ordIso_symmetric by blast
thus ?thesis using assms cinfinite_def stable_regularCard Cinfinite_cong by blast
qed
corollary card_of_UNION_ordLess_infinite_Field_regularCard:
assumes "regularCard r" and "Cinfinite r" and "|I| <o r" and "∀i ∈ I. |A i| <o r"
shows "|⋃i ∈ I. A i| <o r"
using card_of_UNION_ordLess_infinite_Field regularCard_stable assms cinfinite_def by blast
subsection ‹Binary sum›
definition csum (infixr "+c" 65)
where "r1 +c r2 ≡ |Field r1 <+> Field r2|"
lemma Field_csum: "Field (r +c s) = Inl ` Field r ∪ Inr ` Field s"
unfolding csum_def Field_card_of by auto
lemma Card_order_csum: "Card_order (r1 +c r2)"
unfolding csum_def by (simp add: card_of_Card_order)
lemma csum_Cnotzero1: "Cnotzero r1 ⟹ Cnotzero (r1 +c r2)"
using Cnotzero_imp_not_empty
by (auto intro: card_of_Card_order simp: csum_def card_of_ordIso_czero_iff_empty)
lemma card_order_csum:
assumes "card_order r1" "card_order r2"
shows "card_order (r1 +c r2)"
proof -
have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
thus ?thesis unfolding csum_def by (auto simp: card_of_card_order_on)
qed
lemma cinfinite_csum:
"cinfinite r1 ∨ cinfinite r2 ⟹ cinfinite (r1 +c r2)"
unfolding cinfinite_def csum_def by (auto simp: Field_card_of)
lemma Cinfinite_csum:
"Cinfinite r1 ∨ Cinfinite r2 ⟹ Cinfinite (r1 +c r2)"
using card_of_Card_order
by (auto simp: cinfinite_def csum_def Field_card_of)
lemma Cinfinite_csum1: "Cinfinite r1 ⟹ Cinfinite (r1 +c r2)"
by (blast intro!: Cinfinite_csum elim: )
lemma Cinfinite_csum_weak:
"⟦Cinfinite r1; Cinfinite r2⟧ ⟹ Cinfinite (r1 +c r2)"
by (erule Cinfinite_csum1)
lemma csum_cong: "⟦p1 =o r1; p2 =o r2⟧ ⟹ p1 +c p2 =o r1 +c r2"
by (simp only: csum_def ordIso_Plus_cong)
lemma csum_cong1: "p1 =o r1 ⟹ p1 +c q =o r1 +c q"
by (simp only: csum_def ordIso_Plus_cong1)
lemma csum_cong2: "p2 =o r2 ⟹ q +c p2 =o q +c r2"
by (simp only: csum_def ordIso_Plus_cong2)
lemma csum_mono: "⟦p1 ≤o r1; p2 ≤o r2⟧ ⟹ p1 +c p2 ≤o r1 +c r2"
by (simp only: csum_def ordLeq_Plus_mono)
lemma csum_mono1: "p1 ≤o r1 ⟹ p1 +c q ≤o r1 +c q"
by (simp only: csum_def ordLeq_Plus_mono1)
lemma csum_mono2: "p2 ≤o r2 ⟹ q +c p2 ≤o q +c r2"
by (simp only: csum_def ordLeq_Plus_mono2)
lemma ordLeq_csum1: "Card_order p1 ⟹ p1 ≤o p1 +c p2"
by (simp only: csum_def Card_order_Plus1)
lemma ordLeq_csum2: "Card_order p2 ⟹ p2 ≤o p1 +c p2"
by (simp only: csum_def Card_order_Plus2)
lemma csum_com: "p1 +c p2 =o p2 +c p1"
by (simp only: csum_def card_of_Plus_commute)
lemma csum_assoc: "(p1 +c p2) +c p3 =o p1 +c p2 +c p3"
by (simp only: csum_def Field_card_of card_of_Plus_assoc)
lemma Cfinite_csum: "⟦Cfinite r; Cfinite s⟧ ⟹ Cfinite (r +c s)"
unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp
lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)"
proof -
have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)"
by (rule csum_assoc)
also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4"
by (intro csum_assoc csum_cong2 ordIso_symmetric)
also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4"
by (intro csum_com csum_cong1 csum_cong2)
also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4"
by (intro csum_assoc csum_cong2 ordIso_symmetric)
also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)"
by (intro csum_assoc ordIso_symmetric)
finally show ?thesis .
qed
lemma Plus_csum: "|A <+> B| =o |A| +c |B|"
by (simp only: csum_def Field_card_of card_of_refl)
lemma Un_csum: "|A ∪ B| ≤o |A| +c |B|"
using ordLeq_ordIso_trans[OF card_of_Un_Plus_ordLeq Plus_csum] by blast
subsection ‹One›
definition cone where
"cone = card_of {()}"
lemma Card_order_cone: "Card_order cone"
unfolding cone_def by (rule card_of_Card_order)
lemma Cfinite_cone: "Cfinite cone"
unfolding cfinite_def by (simp add: Card_order_cone)
lemma cone_not_czero: "¬ (cone =o czero)"
unfolding czero_def cone_def ordIso_iff_ordLeq
using card_of_empty3 empty_not_insert by blast
lemma cone_ordLeq_Cnotzero: "Cnotzero r ⟹ cone ≤o r"
unfolding cone_def by (rule Card_order_singl_ordLeq) (auto intro: czeroI)
subsection ‹Two›
definition ctwo where
"ctwo = |UNIV :: bool set|"
lemma Card_order_ctwo: "Card_order ctwo"
unfolding ctwo_def by (rule card_of_Card_order)
lemma ctwo_not_czero: "¬ (ctwo =o czero)"
using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq
unfolding czero_def ctwo_def using UNIV_not_empty by auto
lemma ctwo_Cnotzero: "Cnotzero ctwo"
by (simp add: ctwo_not_czero Card_order_ctwo)
subsection ‹Family sum›
definition Csum where
"Csum r rs ≡ |SIGMA i : Field r. Field (rs i)|"
syntax "_Csum" ::
"pttrn => ('a * 'a) set => 'b * 'b set => (('a * 'b) * ('a * 'b)) set"
("(3CSUM _:_. _)" [0, 51, 10] 10)
translations
"CSUM i:r. rs" == "CONST Csum r (%i. rs)"
lemma SIGMA_CSUM: "|SIGMA i : I. As i| = (CSUM i : |I|. |As i| )"
by (auto simp: Csum_def Field_card_of)
subsection ‹Product›
definition cprod (infixr "*c" 80) where
"r1 *c r2 = |Field r1 × Field r2|"
lemma card_order_cprod:
assumes "card_order r1" "card_order r2"
shows "card_order (r1 *c r2)"
proof -
have "Field r1 = UNIV" "Field r2 = UNIV"
using assms card_order_on_Card_order by auto
thus ?thesis by (auto simp: cprod_def card_of_card_order_on)
qed
lemma Card_order_cprod: "Card_order (r1 *c r2)"
by (simp only: cprod_def Field_card_of card_of_card_order_on)
lemma cprod_mono1: "p1 ≤o r1 ⟹ p1 *c q ≤o r1 *c q"
by (simp only: cprod_def ordLeq_Times_mono1)
lemma cprod_mono2: "p2 ≤o r2 ⟹ q *c p2 ≤o q *c r2"
by (simp only: cprod_def ordLeq_Times_mono2)
lemma cprod_mono: "⟦p1 ≤o r1; p2 ≤o r2⟧ ⟹ p1 *c p2 ≤o r1 *c r2"
by (rule ordLeq_transitive[OF cprod_mono1 cprod_mono2])
lemma ordLeq_cprod2: "⟦Cnotzero p1; Card_order p2⟧ ⟹ p2 ≤o p1 *c p2"
unfolding cprod_def by (rule Card_order_Times2) (auto intro: czeroI)
lemma cinfinite_cprod: "⟦cinfinite r1; cinfinite r2⟧ ⟹ cinfinite (r1 *c r2)"
by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product)
lemma cinfinite_cprod2: "⟦Cnotzero r1; Cinfinite r2⟧ ⟹ cinfinite (r1 *c r2)"
by (rule cinfinite_mono) (auto intro: ordLeq_cprod2)
lemma Cinfinite_cprod2: "⟦Cnotzero r1; Cinfinite r2⟧ ⟹ Cinfinite (r1 *c r2)"
by (blast intro: cinfinite_cprod2 Card_order_cprod)
lemma cprod_cong: "⟦p1 =o r1; p2 =o r2⟧ ⟹ p1 *c p2 =o r1 *c r2"
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono)
lemma cprod_cong1: "⟦p1 =o r1⟧ ⟹ p1 *c p2 =o r1 *c p2"
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono1)
lemma cprod_cong2: "p2 =o r2 ⟹ q *c p2 =o q *c r2"
unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono2)
lemma cprod_com: "p1 *c p2 =o p2 *c p1"
by (simp only: cprod_def card_of_Times_commute)
lemma card_of_Csum_Times:
"∀i ∈ I. |A i| ≤o |B| ⟹ (CSUM i : |I|. |A i| ) ≤o |I| *c |B|"
by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_mono1)
lemma card_of_Csum_Times':
assumes "Card_order r" "∀i ∈ I. |A i| ≤o r"
shows "(CSUM i : |I|. |A i| ) ≤o |I| *c r"
proof -
from assms(1) have *: "r =o |Field r|" by (simp add: card_of_unique)
with assms(2) have "∀i ∈ I. |A i| ≤o |Field r|" by (blast intro: ordLeq_ordIso_trans)
hence "(CSUM i : |I|. |A i| ) ≤o |I| *c |Field r|" by (simp only: card_of_Csum_Times)
also from * have "|I| *c |Field r| ≤o |I| *c r"
by (simp only: Field_card_of card_of_refl cprod_def ordIso_imp_ordLeq)
finally show ?thesis .
qed
lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)"
unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric)
lemma csum_absorb2': "⟦Card_order r2; r1 ≤o r2; cinfinite r1 ∨ cinfinite r2⟧ ⟹ r1 +c r2 =o r2"
unfolding csum_def
using Card_order_Plus_infinite
by (fastforce simp: cinfinite_def dest: cinfinite_mono)
lemma csum_absorb1':
assumes card: "Card_order r2"
and r12: "r1 ≤o r2" and cr12: "cinfinite r1 ∨ cinfinite r2"
shows "r2 +c r1 =o r2"
proof -
have "r1 +c r2 =o r2"
by (simp add: csum_absorb2' assms)
then show ?thesis
by (blast intro: ordIso_transitive csum_com)
qed
lemma csum_absorb1: "⟦Cinfinite r2; r1 ≤o r2⟧ ⟹ r2 +c r1 =o r2"
by (rule csum_absorb1') auto
lemma csum_absorb2: "⟦Cinfinite r2 ; r1 ≤o r2⟧ ⟹ r1 +c r2 =o r2"
using ordIso_transitive csum_com csum_absorb1 by blast
lemma regularCard_csum:
assumes "Cinfinite r" "Cinfinite s" "regularCard r" "regularCard s"
shows "regularCard (r +c s)"
proof (cases "r ≤o s")
case True
then show ?thesis using regularCard_ordIso[of s] csum_absorb2'[THEN ordIso_symmetric] assms by auto
next
case False
have "Well_order s" "Well_order r" using assms card_order_on_well_order_on by auto
then have "s ≤o r" using not_ordLeq_iff_ordLess False ordLess_imp_ordLeq by auto
then show ?thesis using regularCard_ordIso[of r] csum_absorb1'[THEN ordIso_symmetric] assms by auto
qed
lemma csum_mono_strict:
assumes Card_order: "Card_order r" "Card_order q"
and Cinfinite: "Cinfinite r'" "Cinfinite q'"
and less: "r <o r'" "q <o q'"
shows "r +c q <o r' +c q'"
proof -
have Well_order: "Well_order r" "Well_order q" "Well_order r'" "Well_order q'"
using card_order_on_well_order_on Card_order Cinfinite by auto
show ?thesis
proof (cases "Cinfinite r")
case outer: True
then show ?thesis
proof (cases "Cinfinite q")
case inner: True
then show ?thesis
proof (cases "r ≤o q")
case True
then have "r +c q =o q" using csum_absorb2 inner by blast
then show ?thesis
using ordIso_ordLess_trans ordLess_ordLeq_trans less Cinfinite ordLeq_csum2 by blast
next
case False
then have "q ≤o r" using not_ordLeq_iff_ordLess Well_order ordLess_imp_ordLeq by blast
then have "r +c q =o r" using csum_absorb1 outer by blast
then show ?thesis
using ordIso_ordLess_trans ordLess_ordLeq_trans less Cinfinite ordLeq_csum1 by blast
qed
next
case False
then have "Cfinite q" using Card_order cinfinite_def cfinite_def by blast
then have "q ≤o r" using finite_ordLess_infinite cfinite_def cinfinite_def outer
Well_order ordLess_imp_ordLeq by blast
then have "r +c q =o r" by (rule csum_absorb1[OF outer])
then show ?thesis using ordIso_ordLess_trans ordLess_ordLeq_trans less ordLeq_csum1 Cinfinite by blast
qed
next
case False
then have outer: "Cfinite r" using Card_order cinfinite_def cfinite_def by blast
then show ?thesis
proof (cases "Cinfinite q")
case True
then have "r ≤o q" using finite_ordLess_infinite cinfinite_def cfinite_def outer Well_order
ordLess_imp_ordLeq by blast
then have "r +c q =o q" by (rule csum_absorb2[OF True])
then show ?thesis using ordIso_ordLess_trans ordLess_ordLeq_trans less ordLeq_csum2 Cinfinite by blast
next
case False
then have "Cfinite q" using Card_order cinfinite_def cfinite_def by blast
then have "Cfinite (r +c q)" using Cfinite_csum outer by blast
moreover have "Cinfinite (r' +c q')" using Cinfinite_csum1 Cinfinite by blast
ultimately show ?thesis using Cfinite_ordLess_Cinfinite by blast
qed
qed
qed
subsection ‹Exponentiation›
definition cexp (infixr "^c" 90) where
"r1 ^c r2 ≡ |Func (Field r2) (Field r1)|"
lemma Card_order_cexp: "Card_order (r1 ^c r2)"
unfolding cexp_def by (rule card_of_Card_order)
lemma cexp_mono':
assumes 1: "p1 ≤o r1" and 2: "p2 ≤o r2"
and n: "Field p2 = {} ⟹ Field r2 = {}"
shows "p1 ^c p2 ≤o r1 ^c r2"
proof(cases "Field p1 = {}")
case True
hence "Field p2 ≠ {} ⟹ Func (Field p2) {} = {}" unfolding Func_is_emp by simp
with True have "|Field |Func (Field p2) (Field p1)|| ≤o cone"
unfolding cone_def Field_card_of
by (cases "Field p2 = {}", auto intro: surj_imp_ordLeq simp: Func_empty)
hence "|Func (Field p2) (Field p1)| ≤o cone" by (simp add: Field_card_of cexp_def)
hence "p1 ^c p2 ≤o cone" unfolding cexp_def .
thus ?thesis
proof (cases "Field p2 = {}")
case True
with n have "Field r2 = {}" .
hence "cone ≤o r1 ^c r2" unfolding cone_def cexp_def Func_def
by (auto intro: card_of_ordLeqI[where f="λ_ _. undefined"])
thus ?thesis using ‹p1 ^c p2 ≤o cone› ordLeq_transitive by auto
next
case False with True have "|Field (p1 ^c p2)| =o czero"
unfolding card_of_ordIso_czero_iff_empty cexp_def Field_card_of Func_def by auto
thus ?thesis unfolding cexp_def card_of_ordIso_czero_iff_empty Field_card_of
by (simp add: card_of_empty)
qed
next
case False
have 1: "|Field p1| ≤o |Field r1|" and 2: "|Field p2| ≤o |Field r2|"
using 1 2 by (auto simp: card_of_mono2)
obtain f1 where f1: "f1 ` Field r1 = Field p1"
using 1 unfolding card_of_ordLeq2[OF False, symmetric] by auto
obtain f2 where f2: "inj_on f2 (Field p2)" "f2 ` Field p2 ⊆ Field r2"
using 2 unfolding card_of_ordLeq[symmetric] by blast
have 0: "Func_map (Field p2) f1 f2 ` (Field (r1 ^c r2)) = Field (p1 ^c p2)"
unfolding cexp_def Field_card_of using Func_map_surj[OF f1 f2 n, symmetric] .
have 00: "Field (p1 ^c p2) ≠ {}" unfolding cexp_def Field_card_of Func_is_emp
using False by simp
show ?thesis
using 0 card_of_ordLeq2[OF 00] unfolding cexp_def Field_card_of by blast
qed
lemma cexp_mono:
assumes 1: "p1 ≤o r1" and 2: "p2 ≤o r2"
and n: "p2 =o czero ⟹ r2 =o czero" and card: "Card_order p2"
shows "p1 ^c p2 ≤o r1 ^c r2"
by (rule cexp_mono'[OF 1 2 czeroE[OF n[OF czeroI[OF card]]]])
lemma cexp_mono1:
assumes 1: "p1 ≤o r1" and q: "Card_order q"
shows "p1 ^c q ≤o r1 ^c q"
using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q)
lemma cexp_mono2':
assumes 2: "p2 ≤o r2" and q: "Card_order q"
and n: "Field p2 = {} ⟹ Field r2 = {}"
shows "q ^c p2 ≤o q ^c r2"
using ordLeq_refl[OF q] by (rule cexp_mono'[OF _ 2 n]) auto
lemma cexp_mono2:
assumes 2: "p2 ≤o r2" and q: "Card_order q"
and n: "p2 =o czero ⟹ r2 =o czero" and card: "Card_order p2"
shows "q ^c p2 ≤o q ^c r2"
using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto
lemma cexp_mono2_Cnotzero:
assumes "p2 ≤o r2" "Card_order q" "Cnotzero p2"
shows "q ^c p2 ≤o q ^c r2"
using assms(3) czeroI by (blast intro: cexp_mono2'[OF assms(1,2)])
lemma cexp_cong:
assumes 1: "p1 =o r1" and 2: "p2 =o r2"
and Cr: "Card_order r2"
and Cp: "Card_order p2"
shows "p1 ^c p2 =o r1 ^c r2"
proof -
obtain f where "bij_betw f (Field p2) (Field r2)"
using 2 card_of_ordIso[of "Field p2" "Field r2"] card_of_cong by auto
hence 0: "Field p2 = {} ⟷ Field r2 = {}" unfolding bij_betw_def by auto
have r: "p2 =o czero ⟹ r2 =o czero"
and p: "r2 =o czero ⟹ p2 =o czero"
using 0 Cr Cp czeroE czeroI by auto
show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq
using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by blast
qed
lemma cexp_cong1:
assumes 1: "p1 =o r1" and q: "Card_order q"
shows "p1 ^c q =o r1 ^c q"
by (rule cexp_cong[OF 1 _ q q]) (rule ordIso_refl[OF q])
lemma cexp_cong2:
assumes 2: "p2 =o r2" and q: "Card_order q" and p: "Card_order p2"
shows "q ^c p2 =o q ^c r2"
by (rule cexp_cong[OF _ 2]) (auto simp only: ordIso_refl Card_order_ordIso2[OF p 2] q p)
lemma cexp_cone:
assumes "Card_order r"
shows "r ^c cone =o r"
proof -
have "r ^c cone =o |Field r|"
unfolding cexp_def cone_def Field_card_of Func_empty
card_of_ordIso[symmetric] bij_betw_def Func_def inj_on_def image_def
by (rule exI[of _ "λf. f ()"]) auto
also have "|Field r| =o r" by (rule card_of_Field_ordIso[OF assms])
finally show ?thesis .
qed
lemma cexp_cprod:
assumes r1: "Card_order r1"
shows "(r1 ^c r2) ^c r3 =o r1 ^c (r2 *c r3)" (is "?L =o ?R")
proof -
have "?L =o r1 ^c (r3 *c r2)"
unfolding cprod_def cexp_def Field_card_of
using card_of_Func_Times by(rule ordIso_symmetric)
also have "r1 ^c (r3 *c r2) =o ?R"
using cprod_com r1 by (intro cexp_cong2, auto simp: Card_order_cprod)
finally show ?thesis .
qed
lemma cprod_infinite1': "⟦Cinfinite r; Cnotzero p; p ≤o r⟧ ⟹ r *c p =o r"
unfolding cinfinite_def cprod_def
by (rule Card_order_Times_infinite[THEN conjunct1]) (blast intro: czeroI)+
lemma cprod_infinite: "Cinfinite r ⟹ r *c r =o r"
using cprod_infinite1' Cinfinite_Cnotzero ordLeq_refl by blast
lemma cexp_cprod_ordLeq:
assumes r1: "Card_order r1" and r2: "Cinfinite r2"
and r3: "Cnotzero r3" "r3 ≤o r2"
shows "(r1 ^c r2) ^c r3 =o r1 ^c r2" (is "?L =o ?R")
proof-
have "?L =o r1 ^c (r2 *c r3)" using cexp_cprod[OF r1] .
also have "r1 ^c (r2 *c r3) =o ?R"
using assms by (fastforce simp: Card_order_cprod intro: cprod_infinite1' cexp_cong2)
finally show ?thesis .
qed
lemma Cnotzero_UNIV: "Cnotzero |UNIV|"
by (auto simp: card_of_Card_order card_of_ordIso_czero_iff_empty)
lemma ordLess_ctwo_cexp:
assumes "Card_order r"
shows "r <o ctwo ^c r"
proof -
have "r <o |Pow (Field r)|" using assms by (rule Card_order_Pow)
also have "|Pow (Field r)| =o ctwo ^c r"
unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func)
finally show ?thesis .
qed
lemma ordLeq_cexp1:
assumes "Cnotzero r" "Card_order q"
shows "q ≤o q ^c r"
proof (cases "q =o (czero :: 'a rel)")
case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
next
case False
have "q =o q ^c cone"
by (blast intro: assms ordIso_symmetric cexp_cone)
also have "q ^c cone ≤o q ^c r"
using assms
by (intro cexp_mono2) (simp_all add: cone_ordLeq_Cnotzero cone_not_czero Card_order_cone)
finally show ?thesis .
qed
lemma ordLeq_cexp2:
assumes "ctwo ≤o q" "Card_order r"
shows "r ≤o q ^c r"
proof (cases "r =o (czero :: 'a rel)")
case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
next
case False
have "r <o ctwo ^c r"
by (blast intro: assms ordLess_ctwo_cexp)
also have "ctwo ^c r ≤o q ^c r"
by (blast intro: assms cexp_mono1)
finally show ?thesis by (rule ordLess_imp_ordLeq)
qed
lemma cinfinite_cexp: "⟦ctwo ≤o q; Cinfinite r⟧ ⟹ cinfinite (q ^c r)"
by (rule cinfinite_mono[OF ordLeq_cexp2]) simp_all
lemma Cinfinite_cexp:
"⟦ctwo ≤o q; Cinfinite r⟧ ⟹ Cinfinite (q ^c r)"
by (simp add: cinfinite_cexp Card_order_cexp)
lemma card_order_cexp:
assumes "card_order r1" "card_order r2"
shows "card_order (r1 ^c r2)"
proof -
have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
thus ?thesis unfolding cexp_def Func_def using card_of_card_order_on by simp
qed
lemma ctwo_ordLess_natLeq: "ctwo <o natLeq"
unfolding ctwo_def using finite_UNIV natLeq_cinfinite natLeq_Card_order
by (intro Cfinite_ordLess_Cinfinite) (auto simp: cfinite_def card_of_Card_order)
lemma ctwo_ordLess_Cinfinite: "Cinfinite r ⟹ ctwo <o r"
by (rule ordLess_ordLeq_trans[OF ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite])
lemma ctwo_ordLeq_Cinfinite:
assumes "Cinfinite r"
shows "ctwo ≤o r"
by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]])
lemma Un_Cinfinite_bound: "⟦|A| ≤o r; |B| ≤o r; Cinfinite r⟧ ⟹ |A ∪ B| ≤o r"
by (auto simp add: cinfinite_def card_of_Un_ordLeq_infinite_Field)
lemma Un_Cinfinite_bound_strict: "⟦|A| <o r; |B| <o r; Cinfinite r⟧ ⟹ |A ∪ B| <o r"
by (auto simp add: cinfinite_def card_of_Un_ordLess_infinite_Field)
lemma UNION_Cinfinite_bound: "⟦|I| ≤o r; ∀i ∈ I. |A i| ≤o r; Cinfinite r⟧ ⟹ |⋃i ∈ I. A i| ≤o r"
by (auto simp add: card_of_UNION_ordLeq_infinite_Field cinfinite_def)
lemma csum_cinfinite_bound:
assumes "p ≤o r" "q ≤o r" "Card_order p" "Card_order q" "Cinfinite r"
shows "p +c q ≤o r"
proof -
have "|Field p| ≤o r" "|Field q| ≤o r"
using assms card_of_least ordLeq_transitive unfolding card_order_on_def by blast+
with assms show ?thesis unfolding cinfinite_def csum_def
by (blast intro: card_of_Plus_ordLeq_infinite_Field)
qed
lemma cprod_cinfinite_bound:
assumes "p ≤o r" "q ≤o r" "Card_order p" "Card_order q" "Cinfinite r"
shows "p *c q ≤o r"
proof -
from assms(1-4) have "|Field p| ≤o r" "|Field q| ≤o r"
unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
with assms show ?thesis unfolding cinfinite_def cprod_def
by (blast intro: card_of_Times_ordLeq_infinite_Field)
qed
lemma cprod_infinite2': "⟦Cnotzero r1; Cinfinite r2; r1 ≤o r2⟧ ⟹ r1 *c r2 =o r2"
unfolding ordIso_iff_ordLeq
by (intro conjI cprod_cinfinite_bound ordLeq_cprod2 ordLeq_refl)
(auto dest!: ordIso_imp_ordLeq not_ordLeq_ordLess simp: czero_def Card_order_empty)
lemma regularCard_cprod:
assumes "Cinfinite r" "Cinfinite s" "regularCard r" "regularCard s"
shows "regularCard (r *c s)"
proof (cases "r ≤o s")
case True
with assms Cinfinite_Cnotzero show ?thesis
by (force intro: regularCard_ordIso ordIso_symmetric[OF cprod_infinite2'])
next
case False
have "Well_order r" "Well_order s" using assms card_order_on_well_order_on by auto
then have "s ≤o r" using not_ordLeq_iff_ordLess ordLess_imp_ordLeq False by blast
with assms Cinfinite_Cnotzero show ?thesis
by (force intro: regularCard_ordIso ordIso_symmetric[OF cprod_infinite1'])
qed
lemma cprod_csum_cexp:
"r1 *c r2 ≤o (r1 +c r2) ^c ctwo"
unfolding cprod_def csum_def cexp_def ctwo_def Field_card_of
proof -
let ?f = "λ(a, b). %x. if x then Inl a else Inr b"
have "inj_on ?f (Field r1 × Field r2)" (is "inj_on _ ?LHS")
by (auto simp: inj_on_def fun_eq_iff split: bool.split)
moreover
have "?f ` ?LHS ⊆ Func (UNIV :: bool set) (Field r1 <+> Field r2)" (is "_ ⊆ ?RHS")
by (auto simp: Func_def)
ultimately show "|?LHS| ≤o |?RHS|" using card_of_ordLeq by blast
qed
lemma Cfinite_cprod_Cinfinite: "⟦Cfinite r; Cinfinite s⟧ ⟹ r *c s ≤o s"
by (intro cprod_cinfinite_bound)
(auto intro: ordLeq_refl ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite])
lemma cprod_cexp: "(r *c s) ^c t =o r ^c t *c s ^c t"
unfolding cprod_def cexp_def Field_card_of by (rule Func_Times_Range)
lemma cprod_cexp_csum_cexp_Cinfinite:
assumes t: "Cinfinite t"
shows "(r *c s) ^c t ≤o (r +c s) ^c t"
proof -
have "(r *c s) ^c t ≤o ((r +c s) ^c ctwo) ^c t"
by (rule cexp_mono1[OF cprod_csum_cexp conjunct2[OF t]])
also have "((r +c s) ^c ctwo) ^c t =o (r +c s) ^c (ctwo *c t)"
by (rule cexp_cprod[OF Card_order_csum])
also have "(r +c s) ^c (ctwo *c t) =o (r +c s) ^c (t *c ctwo)"
by (rule cexp_cong2[OF cprod_com Card_order_csum Card_order_cprod])
also have "(r +c s) ^c (t *c ctwo) =o ((r +c s) ^c t) ^c ctwo"
by (rule ordIso_symmetric[OF cexp_cprod[OF Card_order_csum]])
also have "((r +c s) ^c t) ^c ctwo =o (r +c s) ^c t"
by (rule cexp_cprod_ordLeq[OF Card_order_csum t ctwo_Cnotzero ctwo_ordLeq_Cinfinite[OF t]])
finally show ?thesis .
qed
lemma Cfinite_cexp_Cinfinite:
assumes s: "Cfinite s" and t: "Cinfinite t"
shows "s ^c t ≤o ctwo ^c t"
proof (cases "s ≤o ctwo")
case True thus ?thesis using t by (blast intro: cexp_mono1)
next
case False
hence "ctwo ≤o s" using ordLeq_total[of s ctwo] Card_order_ctwo s
by (auto intro: card_order_on_well_order_on)
hence "Cnotzero s" using Cnotzero_mono[OF ctwo_Cnotzero] s by blast
hence st: "Cnotzero (s *c t)" by (intro Cinfinite_Cnotzero[OF Cinfinite_cprod2]) (auto simp: t)
have "s ^c t ≤o (ctwo ^c s) ^c t"
using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp])
also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)"
by (blast intro: Card_order_ctwo cexp_cprod)
also have "ctwo ^c (s *c t) ≤o ctwo ^c t"
using assms st by (intro cexp_mono2_Cnotzero Cfinite_cprod_Cinfinite Card_order_ctwo)
finally show ?thesis .
qed
lemma csum_Cfinite_cexp_Cinfinite:
assumes r: "Card_order r" and s: "Cfinite s" and t: "Cinfinite t"
shows "(r +c s) ^c t ≤o (r +c ctwo) ^c t"
proof (cases "Cinfinite r")
case True
hence "r +c s =o r" by (intro csum_absorb1 ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite] s)
hence "(r +c s) ^c t =o r ^c t" using t by (blast intro: cexp_cong1)
also have "r ^c t ≤o (r +c ctwo) ^c t" using t by (blast intro: cexp_mono1 ordLeq_csum1 r)
finally show ?thesis .
next
case False
with r have "Cfinite r" unfolding cinfinite_def cfinite_def by auto
hence "Cfinite (r +c s)" by (intro Cfinite_csum s)
hence "(r +c s) ^c t ≤o ctwo ^c t" by (intro Cfinite_cexp_Cinfinite t)
also have "ctwo ^c t ≤o (r +c ctwo) ^c t" using t
by (blast intro: cexp_mono1 ordLeq_csum2 Card_order_ctwo)
finally show ?thesis .
qed
lemma Cinfinite_cardSuc: "Cinfinite r ⟹ Cinfinite (cardSuc r)"
by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite)
lemma cardSuc_UNION_Cinfinite:
assumes "Cinfinite r" "relChain (cardSuc r) As" "B ≤ (⋃i ∈ Field (cardSuc r). As i)" "|B| <=o r"
shows "∃i ∈ Field (cardSuc r). B ≤ As i"
using cardSuc_UNION assms unfolding cinfinite_def by blast
lemma Cinfinite_card_suc: "⟦ Cinfinite r ; card_order r ⟧ ⟹ Cinfinite (card_suc r)"
using Cinfinite_cong[OF cardSuc_ordIso_card_suc Cinfinite_cardSuc] .
lemma card_suc_least: "⟦card_order r; Card_order s; r <o s⟧ ⟹ card_suc r ≤o s"
by (rule ordIso_ordLeq_trans[OF ordIso_symmetric[OF cardSuc_ordIso_card_suc]])
(auto intro!: cardSuc_least simp: card_order_on_Card_order)
lemma regularCard_cardSuc: "Cinfinite k ⟹ regularCard (cardSuc k)"
by (rule infinite_cardSuc_regularCard) (auto simp: cinfinite_def)
lemma regularCard_card_suc: "card_order r ⟹ Cinfinite r ⟹ regularCard (card_suc r)"
using cardSuc_ordIso_card_suc Cinfinite_cardSuc regularCard_cardSuc regularCard_ordIso
by blast
end