Theory Examples

theory Examples
imports Main "HOL-Library.Predicate_Compile_Alternative_Defs"
begin

declare [[values_timeout = 480.0]]

section ‹Formal Languages›

subsection ‹General Context Free Grammars›

text ‹a contribution by Aditi Barthwal›

datatype ('nts,'ts) symbol = NTS 'nts
                            | TS 'ts

                            
datatype ('nts,'ts) rule = rule 'nts "('nts,'ts) symbol list"

type_synonym ('nts,'ts) grammar = "('nts,'ts) rule set * 'nts"

fun rules :: "('nts,'ts) grammar => ('nts,'ts) rule set"
where
  "rules (r, s) = r"

definition derives 
where
"derives g = { (lsl,rsl). s1 s2 lhs rhs. 
                         (s1 @ [NTS lhs] @ s2 = lsl) 
                         (s1 @ rhs @ s2) = rsl 
                         (rule lhs rhs)  fst g }"

definition derivesp ::
  "(('nts, 'ts) rule => bool) * 'nts => ('nts, 'ts) symbol list => ('nts, 'ts) symbol list => bool"
where
  "derivesp g = (λ lhs rhs. (lhs, rhs)  derives (Collect (fst g), snd g))"
 
lemma [code_pred_def]:
  "derivesp g = (λ lsl rsl. s1 s2 lhs rhs. 
                         (s1 @ [NTS lhs] @ s2 = lsl) 
                         (s1 @ rhs @ s2) = rsl 
                         (fst g) (rule lhs rhs))"
unfolding derivesp_def derives_def by auto

abbreviation "example_grammar == 
({ rule ''S'' [NTS ''A'', NTS ''B''],
   rule ''S'' [TS ''a''],
  rule ''A'' [TS ''b'']}, ''S'')"

definition "example_rules == 
(%x. x = rule ''S'' [NTS ''A'', NTS ''B''] 
   x = rule ''S'' [TS ''a''] 
  x = rule ''A'' [TS ''b''])"


code_pred [inductify, skip_proof] derivesp .

thm derivesp.equation

definition "testp = (% rhs. derivesp (example_rules, ''S'') [NTS ''S''] rhs)"

code_pred (modes: o ⇒ bool) [inductify] testp .
thm testp.equation

values "{rhs. testp rhs}"

declare rtranclp.intros(1)[code_pred_def] converse_rtranclp_into_rtranclp[code_pred_def]

code_pred [inductify] rtranclp .

definition "test2 = (λ rhs. rtranclp (derivesp (example_rules, ''S'')) [NTS ''S''] rhs)"

code_pred [inductify, skip_proof] test2 .

values "{rhs. test2 rhs}"

subsection ‹Some concrete Context Free Grammars›

datatype alphabet = a | b

inductive_set S1 and A1 and B1 where
  "[]  S1"
| "w  A1  b # w  S1"
| "w  B1  a # w  S1"
| "w  S1  a # w  A1"
| "w  S1  b # w  S1"
| "v  B1; v  B1  a # v @ w  B1"

code_pred [inductify] S1p .
code_pred [random_dseq inductify] S1p .
thm S1p.equation
thm S1p.random_dseq_equation

values [random_dseq 5, 5, 5] 5 "{x. S1p x}"

inductive_set S2 and A2 and B2 where
  "[]  S2"
| "w  A2  b # w  S2"
| "w  B2  a # w  S2"
| "w  S2  a # w  A2"
| "w  S2  b # w  B2"
| "v  B2; v  B2  a # v @ w  B2"

code_pred [random_dseq inductify] S2p .
thm S2p.random_dseq_equation
thm A2p.random_dseq_equation
thm B2p.random_dseq_equation

values [random_dseq 5, 5, 5] 10 "{x. S2p x}"

inductive_set S3 and A3 and B3 where
  "[]  S3"
| "w  A3  b # w  S3"
| "w  B3  a # w  S3"
| "w  S3  a # w  A3"
| "w  S3  b # w  B3"
| "v  B3; w  B3  a # v @ w  B3"

code_pred [inductify, skip_proof] S3p .
thm S3p.equation

values 10 "{x. S3p x}"

inductive_set S4 and A4 and B4 where
  "[]  S4"
| "w  A4  b # w  S4"
| "w  B4  a # w  S4"
| "w  S4  a # w  A4"
| "v  A4; w  A4  b # v @ w  A4"
| "w  S4  b # w  B4"
| "v  B4; w  B4  a # v @ w  B4"

code_pred (expected_modes: o => bool, i => bool) S4p .

hide_const a b

section ‹Semantics of programming languages›

subsection ‹IMP›

type_synonym var = nat
type_synonym state = "int list"

datatype com =
  Skip |
  Ass var "state => int" |
  Seq com com |
  IF "state => bool" com com |
  While "state => bool" com

inductive exec :: "com => state => state => bool" where
"exec Skip s s" |
"exec (Ass x e) s (s[x := e(s)])" |
"exec c1 s1 s2 ==> exec c2 s2 s3 ==> exec (Seq c1 c2) s1 s3" |
"b s ==> exec c1 s t ==> exec (IF b c1 c2) s t" |
"~b s ==> exec c2 s t ==> exec (IF b c1 c2) s t" |
"~b s ==> exec (While b c) s s" |
"b s1 ==> exec c s1 s2 ==> exec (While b c) s2 s3 ==> exec (While b c) s1 s3"

code_pred exec .

values "{t. exec
 (While (%s. s!0 > 0) (Seq (Ass 0 (%s. s!0 - 1)) (Ass 1 (%s. s!1 + 1))))
 [3,5] t}"

subsection ‹Lambda›

datatype type =
    Atom nat
  | Fun type type    (infixr "" 200)

datatype dB =
    Var nat
  | App dB dB (infixl "°" 200)
  | Abs type dB

primrec
  nth_el :: "'a list  nat  'a option" ("__" [90, 0] 91)
where
  "[]i = None"
| "(x # xs)i = (case i of 0  Some x | Suc j  xs j)"

inductive nth_el' :: "'a list  nat  'a  bool"
where
  "nth_el' (x # xs) 0 x"
| "nth_el' xs i y  nth_el' (x # xs) (Suc i) y"

inductive typing :: "type list  dB  type  bool"  ("_  _ : _" [50, 50, 50] 50)
  where
    Var [intro!]: "nth_el' env x T  env  Var x : T"
  | Abs [intro!]: "T # env  t : U  env  Abs T t : (T  U)"
  | App [intro!]: "env  s : T  U  env  t : T  env  (s ° t) : U"

primrec
  lift :: "[dB, nat] => dB"
where
    "lift (Var i) k = (if i < k then Var i else Var (i + 1))"
  | "lift (s ° t) k = lift s k ° lift t k"
  | "lift (Abs T s) k = Abs T (lift s (k + 1))"

primrec
  subst :: "[dB, dB, nat] => dB"  ("_[_'/_]" [300, 0, 0] 300)
where
    subst_Var: "(Var i)[s/k] =
      (if k < i then Var (i - 1) else if i = k then s else Var i)"
  | subst_App: "(t ° u)[s/k] = t[s/k] ° u[s/k]"
  | subst_Abs: "(Abs T t)[s/k] = Abs T (t[lift s 0 / k+1])"

inductive beta :: "[dB, dB] => bool"  (infixl "β" 50)
  where
    beta [simp, intro!]: "Abs T s ° t β s[t/0]"
  | appL [simp, intro!]: "s β t ==> s ° u β t ° u"
  | appR [simp, intro!]: "s β t ==> u ° s β u ° t"
  | abs [simp, intro!]: "s β t ==> Abs T s β Abs T t"

code_pred (expected_modes: i => i => o => bool, i => i => i => bool) typing .
thm typing.equation

code_pred (modes: i => i => bool,  i => o => bool as reduce') beta .
thm beta.equation

values "{x. App (Abs (Atom 0) (Var 0)) (Var 1) β x}"

definition "reduce t = Predicate.the (reduce' t)"

value "reduce (App (Abs (Atom 0) (Var 0)) (Var 1))"

code_pred [dseq] typing .
code_pred [random_dseq] typing .

values [random_dseq 1,1,5] 10 "{(Γ, t, T). Γ  t : T}"

subsection ‹A minimal example of yet another semantics›

text ‹thanks to Elke Salecker›

type_synonym vname = nat
type_synonym vvalue = int
type_synonym var_assign = "vname  vvalue"  ― ‹variable assignment›

datatype ir_expr = 
  IrConst vvalue
| ObjAddr vname
| Add ir_expr ir_expr

datatype val =
  IntVal  vvalue

record  configuration =
  Env :: var_assign

inductive eval_var ::
  "ir_expr  configuration  val  bool"
where
  irconst: "eval_var (IrConst i) conf (IntVal i)"
| objaddr: " Env conf n = i   eval_var (ObjAddr n) conf (IntVal i)"
| plus: " eval_var l conf (IntVal vl); eval_var r conf (IntVal vr)  
    eval_var (Add l r) conf (IntVal (vl+vr))"


code_pred eval_var .
thm eval_var.equation

values "{val. eval_var (Add (IrConst 1) (IrConst 2)) (| Env = (λx. 0)|) val}"

subsection ‹Another semantics›

type_synonym name = nat ― ‹For simplicity in examples›
type_synonym state' = "name  nat"

datatype aexp = N nat | V name | Plus aexp aexp

fun aval :: "aexp  state'  nat" where
"aval (N n) _ = n" |
"aval (V x) st = st x" |
"aval (Plus e1 e2) st = aval e1 st + aval e2 st"

datatype bexp = B bool | Not bexp | And bexp bexp | Less aexp aexp

primrec bval :: "bexp  state'  bool" where
"bval (B b) _ = b" |
"bval (Not b) st = (¬ bval b st)" |
"bval (And b1 b2) st = (bval b1 st  bval b2 st)" |
"bval (Less a1 a2) st = (aval a1 st < aval a2 st)"

datatype
  com' = SKIP 
      | Assign name aexp         ("_ ::= _" [1000, 61] 61)
      | Semi   com'  com'          ("_; _"  [60, 61] 60)
      | If     bexp com' com'     ("IF _ THEN _ ELSE _"  [0, 0, 61] 61)
      | While  bexp com'         ("WHILE _ DO _"  [0, 61] 61)

inductive
  big_step :: "com' * state'  state'  bool" (infix "" 55)
where
  Skip:    "(SKIP,s)  s"
| Assign:  "(x ::= a,s)  s(x := aval a s)"

| Semi:    "(c1,s1)  s2    (c2,s2)  s3   (c1;c2, s1)  s3"

| IfTrue:  "bval b s    (c1,s)  t    (IF b THEN c1 ELSE c2, s)  t"
| IfFalse: "¬bval b s    (c2,s)  t    (IF b THEN c1 ELSE c2, s)  t"

| WhileFalse: "¬bval b s  (WHILE b DO c,s)  s"
| WhileTrue:  "bval b s1    (c,s1)  s2    (WHILE b DO c, s2)  s3
                (WHILE b DO c, s1)  s3"

code_pred big_step .

thm big_step.equation

definition list :: "(nat  'a)  nat  'a list" where
  "list s n = map s [0 ..< n]"

values [expected "{[42::nat, 43]}"] "{list s 2|s. (SKIP, nth [42, 43])  s}"


subsection ‹CCS›

text‹This example formalizes finite CCS processes without communication or
recursion. For simplicity, labels are natural numbers.›

datatype proc = nil | pre nat proc | or proc proc | par proc proc

inductive step :: "proc  nat  proc  bool" where
"step (pre n p) n p" |
"step p1 a q  step (or p1 p2) a q" |
"step p2 a q  step (or p1 p2) a q" |
"step p1 a q  step (par p1 p2) a (par q p2)" |
"step p2 a q  step (par p1 p2) a (par p1 q)"

code_pred step .

inductive steps where
"steps p [] p" |
"step p a q  steps q as r  steps p (a#as) r"

code_pred steps .

values 3 
 "{as . steps (par (or (pre 0 nil) (pre 1 nil)) (pre 2 nil)) as (par nil nil)}"

values 5
 "{as . steps (par (or (pre 0 nil) (pre 1 nil)) (pre 2 nil)) as (par nil nil)}"

values 3 "{(a,q). step (par nil nil) a q}"


end