Theory Class3
theory Class3
imports Class2
begin
text ‹3rd Main Lemma›
lemma Cut_a_redu_elim:
assumes a: "Cut <a>.M (x).N ⟶⇩a R"
shows "(∃M'. R = Cut <a>.M' (x).N ∧ M ⟶⇩a M') ∨
(∃N'. R = Cut <a>.M (x).N' ∧ N ⟶⇩a N') ∨
(Cut <a>.M (x).N ⟶⇩c R) ∨
(Cut <a>.M (x).N ⟶⇩l R)"
using a
apply(erule_tac a_redu.cases)
apply(simp_all)
apply(simp_all add: trm.inject)
apply(rule disjI1)
apply(auto simp add: alpha)[1]
apply(rule_tac x="[(a,aa)]∙M'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
apply(rule_tac x="[(a,aa)]∙M'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
apply(rule disjI2)
apply(rule disjI1)
apply(auto simp add: alpha)[1]
apply(rule_tac x="[(x,xa)]∙N'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
apply(rule_tac x="[(x,xa)]∙N'" in exI)
apply(perm_simp add: fresh_left calc_atm a_redu.eqvt fresh_a_redu)
done
lemma Cut_c_redu_elim:
assumes a: "Cut <a>.M (x).N ⟶⇩c R"
shows "(R = M{a:=(x).N} ∧ ¬fic M a) ∨
(R = N{x:=<a>.M} ∧ ¬fin N x)"
using a
apply(erule_tac c_redu.cases)
apply(simp_all)
apply(simp_all add: trm.inject)
apply(rule disjI1)
apply(auto simp add: alpha)[1]
apply(simp add: subst_rename fresh_atm)
apply(simp add: subst_rename fresh_atm)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(perm_simp)
apply(simp add: subst_rename fresh_atm fresh_prod)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(perm_simp)
apply(rule disjI2)
apply(auto simp add: alpha)[1]
apply(simp add: subst_rename fresh_atm)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(perm_simp)
apply(simp add: subst_rename fresh_atm fresh_prod)
apply(simp add: subst_rename fresh_atm fresh_prod)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(perm_simp)
done
lemma not_fic_crename_aux:
assumes a: "fic M c" "c♯(a,b)"
shows "fic (M[a⊢c>b]) c"
using a
apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
done
lemma not_fic_crename:
assumes a: "¬(fic (M[a⊢c>b]) c)" "c♯(a,b)"
shows "¬(fic M c)"
using a
apply(auto dest: not_fic_crename_aux)
done
lemma not_fin_crename_aux:
assumes a: "fin M y"
shows "fin (M[a⊢c>b]) y"
using a
apply(nominal_induct M avoiding: a b rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
done
lemma not_fin_crename:
assumes a: "¬(fin (M[a⊢c>b]) y)"
shows "¬(fin M y)"
using a
apply(auto dest: not_fin_crename_aux)
done
lemma crename_fresh_interesting1:
fixes c::"coname"
assumes a: "c♯(M[a⊢c>b])" "c♯(a,b)"
shows "c♯M"
using a
apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh)
done
lemma crename_fresh_interesting2:
fixes x::"name"
assumes a: "x♯(M[a⊢c>b])"
shows "x♯M"
using a
apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
done
lemma fic_crename:
assumes a: "fic (M[a⊢c>b]) c" "c♯(a,b)"
shows "fic M c"
using a
apply(nominal_induct M avoiding: c a b rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: crename_fresh_interesting1 simp add: fresh_prod fresh_atm)
done
lemma fin_crename:
assumes a: "fin (M[a⊢c>b]) x"
shows "fin M x"
using a
apply(nominal_induct M avoiding: x a b rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: crename_fresh_interesting2 simp add: fresh_prod fresh_atm)
done
lemma crename_Cut:
assumes a: "R[a⊢c>b] = Cut <c>.M (x).N" "c♯(a,b,N,R)" "x♯(M,R)"
shows "∃M' N'. R = Cut <c>.M' (x).N' ∧ M'[a⊢c>b] = M ∧ N'[a⊢c>b] = N ∧ c♯N' ∧ x♯M'"
using a
apply(nominal_induct R avoiding: a b c x M N rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
apply(auto simp add: alpha)
apply(rule_tac x="[(name,x)]∙trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto simp add: fresh_atm)[1]
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,x)]∙trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto simp add: fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_NotR:
assumes a: "R[a⊢c>b] = NotR (x).N c" "x♯R" "c♯(a,b)"
shows "∃N'. (R = NotR (x).N' c) ∧ N'[a⊢c>b] = N"
using a
apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,x)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_NotR':
assumes a: "R[a⊢c>b] = NotR (x).N c" "x♯R" "c♯a"
shows "(∃N'. (R = NotR (x).N' c) ∧ N'[a⊢c>b] = N) ∨ (∃N'. (R = NotR (x).N' a) ∧ b=c ∧ N'[a⊢c>b] = N)"
using a
apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name,x)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name,x)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_NotR_aux:
assumes a: "R[a⊢c>b] = NotR (x).N c"
shows "(a=c ∧ a=b) ∨ (a≠c)"
using a
apply(nominal_induct R avoiding: a b c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_NotL:
assumes a: "R[a⊢c>b] = NotL <c>.N y" "c♯(R,a,b)"
shows "∃N'. (R = NotL <c>.N' y) ∧ N'[a⊢c>b] = N"
using a
apply(nominal_induct R avoiding: a b c y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndL1:
assumes a: "R[a⊢c>b] = AndL1 (x).N y" "x♯R"
shows "∃N'. (R = AndL1 (x).N' y) ∧ N'[a⊢c>b] = N"
using a
apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,x)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndL2:
assumes a: "R[a⊢c>b] = AndL2 (x).N y" "x♯R"
shows "∃N'. (R = AndL2 (x).N' y) ∧ N'[a⊢c>b] = N"
using a
apply(nominal_induct R avoiding: a b x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,x)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndR_aux:
assumes a: "R[a⊢c>b] = AndR <c>.M <d>.N e"
shows "(a=e ∧ a=b) ∨ (a≠e)"
using a
apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_AndR:
assumes a: "R[a⊢c>b] = AndR <c>.M <d>.N e" "c♯(a,b,d,e,N,R)" "d♯(a,b,c,e,M,R)" "e♯(a,b)"
shows "∃M' N'. R = AndR <c>.M' <d>.N' e ∧ M'[a⊢c>b] = M ∧ N'[a⊢c>b] = N ∧ c♯N' ∧ d♯M'"
using a
apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(simp add: fresh_atm fresh_prod)
apply(rule_tac x="[(coname2,d)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a⊢c>b]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_AndR':
assumes a: "R[a⊢c>b] = AndR <c>.M <d>.N e" "c♯(a,b,d,e,N,R)" "d♯(a,b,c,e,M,R)" "e♯a"
shows "(∃M' N'. R = AndR <c>.M' <d>.N' e ∧ M'[a⊢c>b] = M ∧ N'[a⊢c>b] = N ∧ c♯N' ∧ d♯M') ∨
(∃M' N'. R = AndR <c>.M' <d>.N' a ∧ b=e ∧ M'[a⊢c>b] = M ∧ N'[a⊢c>b] = N ∧ c♯N' ∧ d♯M')"
using a [[simproc del: defined_all]]
apply(nominal_induct R avoiding: a b c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(auto split: if_splits simp add: trm.inject alpha)[1]
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha)[1]
apply(case_tac "coname3=a")
apply(simp)
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a⊢c>e]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(simp)
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(coname2,d)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm trm.inject alpha split: if_splits)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a⊢c>b]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_OrR1_aux:
assumes a: "R[a⊢c>b] = OrR1 <c>.M e"
shows "(a=e ∧ a=b) ∨ (a≠e)"
using a
apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_OrR1:
assumes a: "R[a⊢c>b] = OrR1 <c>.N d" "c♯(R,a,b)" "d♯(a,b)"
shows "∃N'. (R = OrR1 <c>.N' d) ∧ N'[a⊢c>b] = N"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrR1':
assumes a: "R[a⊢c>b] = OrR1 <c>.N d" "c♯(R,a,b)" "d♯a"
shows "(∃N'. (R = OrR1 <c>.N' d) ∧ N'[a⊢c>b] = N) ∨
(∃N'. (R = OrR1 <c>.N' a) ∧ b=d ∧ N'[a⊢c>b] = N)"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrR2_aux:
assumes a: "R[a⊢c>b] = OrR2 <c>.M e"
shows "(a=e ∧ a=b) ∨ (a≠e)"
using a
apply(nominal_induct R avoiding: a b c e M rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_OrR2:
assumes a: "R[a⊢c>b] = OrR2 <c>.N d" "c♯(R,a,b)" "d♯(a,b)"
shows "∃N'. (R = OrR2 <c>.N' d) ∧ N'[a⊢c>b] = N"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrR2':
assumes a: "R[a⊢c>b] = OrR2 <c>.N d" "c♯(R,a,b)" "d♯a"
shows "(∃N'. (R = OrR2 <c>.N' d) ∧ N'[a⊢c>b] = N) ∨
(∃N'. (R = OrR2 <c>.N' a) ∧ b=d ∧ N'[a⊢c>b] = N)"
using a
apply(nominal_induct R avoiding: a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_OrL:
assumes a: "R[a⊢c>b] = OrL (x).M (y).N z" "x♯(y,z,N,R)" "y♯(x,z,M,R)"
shows "∃M' N'. R = OrL (x).M' (y).N' z ∧ M'[a⊢c>b] = M ∧ N'[a⊢c>b] = N ∧ x♯N' ∧ y♯M'"
using a
apply(nominal_induct R avoiding: a b x y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(rule_tac x="[(name2,y)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,x)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,x)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name2,y)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a⊢c>b]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ImpL:
assumes a: "R[a⊢c>b] = ImpL <c>.M (y).N z" "c♯(a,b,N,R)" "y♯(z,M,R)"
shows "∃M' N'. R = ImpL <c>.M' (y).N' z ∧ M'[a⊢c>b] = M ∧ N'[a⊢c>b] = N ∧ c♯N' ∧ y♯M'"
using a
apply(nominal_induct R avoiding: a b c y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(rule_tac x="[(name1,y)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,y)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[a⊢c>b]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ImpR_aux:
assumes a: "R[a⊢c>b] = ImpR (x).<c>.M e"
shows "(a=e ∧ a=b) ∨ (a≠e)"
using a
apply(nominal_induct R avoiding: x a b c e M rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma crename_ImpR:
assumes a: "R[a⊢c>b] = ImpR (x).<c>.N d" "c♯(R,a,b)" "d♯(a,b)" "x♯R"
shows "∃N'. (R = ImpR (x).<c>.N' d) ∧ N'[a⊢c>b] = N"
using a
apply(nominal_induct R avoiding: a b x c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,x)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,x)]∙[(coname1, c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ImpR':
assumes a: "R[a⊢c>b] = ImpR (x).<c>.N d" "c♯(R,a,b)" "x♯R" "d♯a"
shows "(∃N'. (R = ImpR (x).<c>.N' d) ∧ N'[a⊢c>b] = N) ∨
(∃N'. (R = ImpR (x).<c>.N' a) ∧ b=d ∧ N'[a⊢c>b] = N)"
using a
apply(nominal_induct R avoiding: x a b c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject abs_perm calc_atm)
apply(rule_tac x="[(name,x)]∙[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name,x)]∙[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod abs_supp fin_supp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma crename_ax2:
assumes a: "N[a⊢c>b] = Ax x c"
shows "∃d. N = Ax x d"
using a
apply(nominal_induct N avoiding: a b rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
done
lemma crename_interesting1:
assumes a: "distinct [a,b,c]"
shows "M[a⊢c>c][c⊢c>b] = M[c⊢c>b][a⊢c>b]"
using a
apply(nominal_induct M avoiding: a c b rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
apply(blast)
apply(rotate_tac 12)
apply(drule_tac x="a" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="c" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="b" in meta_spec)
apply(blast)
apply(blast)
apply(blast)
done
lemma crename_interesting2:
assumes a: "a≠c" "a≠d" "a≠b" "c≠d" "b≠c"
shows "M[a⊢c>b][c⊢c>d] = M[c⊢c>d][a⊢c>b]"
using a
apply(nominal_induct M avoiding: a c b d rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
done
lemma crename_interesting3:
shows "M[a⊢c>c][x⊢n>y] = M[x⊢n>y][a⊢c>c]"
apply(nominal_induct M avoiding: a c x y rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
done
lemma crename_credu:
assumes a: "(M[a⊢c>b]) ⟶⇩c M'"
shows "∃M0. M0[a⊢c>b]=M' ∧ M ⟶⇩c M0"
using a
apply(nominal_induct M≡"M[a⊢c>b]" M' avoiding: M a b rule: c_redu.strong_induct)
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="M'{a:=(x).N'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto dest: not_fic_crename)[1]
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="N'{x:=<a>.M'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto dest: not_fin_crename)[1]
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
done
lemma crename_lredu:
assumes a: "(M[a⊢c>b]) ⟶⇩l M'"
shows "∃M0. M0[a⊢c>b]=M' ∧ M ⟶⇩l M0"
using a
apply(nominal_induct M≡"M[a⊢c>b]" M' avoiding: M a b rule: l_redu.strong_induct)
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "aa=ba")
apply(simp add: crename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule crename_ax2)
apply(auto)[1]
apply(case_tac "d=aa")
apply(simp add: trm.inject)
apply(rule_tac x="M'[a⊢c>aa]" in exI)
apply(rule conjI)
apply(rule crename_interesting1)
apply(simp)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule_tac x="M'[a⊢c>b]" in exI)
apply(rule conjI)
apply(rule crename_interesting2)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fic_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "aa=b")
apply(simp add: crename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule crename_ax2)
apply(auto)[1]
apply(case_tac "d=aa")
apply(simp add: trm.inject)
apply(simp add: trm.inject)
apply(rule_tac x="N'[x⊢n>y]" in exI)
apply(rule conjI)
apply(rule sym)
apply(rule crename_interesting3)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_NotR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_NotL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_AndL1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a1>.M'a (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_AndL2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a2>.N'b (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_OrR1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(auto)
apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule crename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_OrR2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(auto)
apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: crename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
apply(auto)[1]
apply(drule crename_ImpL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule crename_ImpR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: crename_fresh_interesting1)[1]
done
lemma crename_aredu:
assumes a: "(M[a⊢c>b]) ⟶⇩a M'" "a≠b"
shows "∃M0. M0[a⊢c>b]=M' ∧ M ⟶⇩a M0"
using a
apply(nominal_induct "M[a⊢c>b]" M' avoiding: M a b rule: a_redu.strong_induct)
apply(drule crename_lredu)
apply(blast)
apply(drule crename_credu)
apply(blast)
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule crename_fresh_interesting2)
apply(simp add: fresh_a_redu)
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(drule crename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(drule crename_fresh_interesting1)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_a_redu)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(drule crename_NotL)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotL <a>.M0 x" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(frule crename_NotR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_NotR')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotR (x).M0 a" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotR (x).M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(frule crename_AndR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_AndR')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M0 <b>.N' aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(frule crename_AndR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_AndR')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M' <b>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(drule sym)
apply(drule crename_AndL1)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL1 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(drule crename_AndL2)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL2 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(drule crename_OrL)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(drule sym)
apply(drule crename_OrL)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(simp)
apply(drule sym)
apply(frule crename_OrR1_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_OrR1')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR1 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR1 <a>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(frule crename_OrR2_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_OrR2')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR2 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR2 <a>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(drule crename_ImpL)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(drule crename_ImpL)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule crename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(drule sym)
apply(frule crename_ImpR_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule crename_ImpR')
apply(simp)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="ba" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpR (x).<a>.M0 aa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
done
lemma SNa_preserved_renaming1:
assumes a: "SNa M"
shows "SNa (M[a⊢c>b])"
using a
apply(induct rule: SNa_induct)
apply(case_tac "a=b")
apply(simp add: crename_id)
apply(rule SNaI)
apply(drule crename_aredu)
apply(blast)+
done
lemma nrename_interesting1:
assumes a: "distinct [x,y,z]"
shows "M[x⊢n>z][z⊢n>y] = M[z⊢n>y][x⊢n>y]"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
apply(blast)
apply(blast)
apply(rotate_tac 12)
apply(drule_tac x="x" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="y" in meta_spec)
apply(rotate_tac 15)
apply(drule_tac x="z" in meta_spec)
apply(blast)
apply(rotate_tac 11)
apply(drule_tac x="x" in meta_spec)
apply(rotate_tac 14)
apply(drule_tac x="y" in meta_spec)
apply(rotate_tac 14)
apply(drule_tac x="z" in meta_spec)
apply(blast)
done
lemma nrename_interesting2:
assumes a: "x≠z" "x≠u" "x≠y" "z≠u" "y≠z"
shows "M[x⊢n>y][z⊢n>u] = M[z⊢n>u][x⊢n>y]"
using a
apply(nominal_induct M avoiding: x y z u rule: trm.strong_induct)
apply(auto simp add: rename_fresh simp add: trm.inject alpha)
done
lemma not_fic_nrename_aux:
assumes a: "fic M c"
shows "fic (M[x⊢n>y]) c"
using a
apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh)
done
lemma not_fic_nrename:
assumes a: "¬(fic (M[x⊢n>y]) c)"
shows "¬(fic M c)"
using a
apply(auto dest: not_fic_nrename_aux)
done
lemma fin_nrename:
assumes a: "fin M z" "z♯(x,y)"
shows "fin (M[x⊢n>y]) z"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
done
lemma nrename_fresh_interesting1:
fixes z::"name"
assumes a: "z♯(M[x⊢n>y])" "z♯(x,y)"
shows "z♯M"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp)
done
lemma nrename_fresh_interesting2:
fixes c::"coname"
assumes a: "c♯(M[x⊢n>y])"
shows "c♯M"
using a
apply(nominal_induct M avoiding: x y c rule: trm.strong_induct)
apply(auto split: if_splits simp add: abs_fresh abs_supp fin_supp fresh_atm)
done
lemma fin_nrename2:
assumes a: "fin (M[x⊢n>y]) z" "z♯(x,y)"
shows "fin M z"
using a
apply(nominal_induct M avoiding: x y z rule: trm.strong_induct)
apply(auto dest!: fin_elims intro!: fin.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: nrename_fresh_interesting1 simp add: fresh_atm fresh_prod)
done
lemma nrename_Cut:
assumes a: "R[x⊢n>y] = Cut <c>.M (z).N" "c♯(N,R)" "z♯(x,y,M,R)"
shows "∃M' N'. R = Cut <c>.M' (z).N' ∧ M'[x⊢n>y] = M ∧ N'[x⊢n>y] = N ∧ c♯N' ∧ z♯M'"
using a
apply(nominal_induct R avoiding: c y x z M N rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
apply(auto simp add: alpha fresh_atm)
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,z)]∙trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(auto simp add: fresh_atm)[1]
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotR:
assumes a: "R[x⊢n>y] = NotR (z).N c" "z♯(R,x,y)"
shows "∃N'. (R = NotR (z).N' c) ∧ N'[x⊢n>y] = N"
using a
apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,z)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotL:
assumes a: "R[x⊢n>y] = NotL <c>.N z" "c♯R" "z♯(x,y)"
shows "∃N'. (R = NotL <c>.N' z) ∧ N'[x⊢n>y] = N"
using a
apply(nominal_induct R avoiding: x y c z N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotL':
assumes a: "R[x⊢n>y] = NotL <c>.N u" "c♯R" "x≠y"
shows "(∃N'. (R = NotL <c>.N' u) ∧ N'[x⊢n>y] = N) ∨ (∃N'. (R = NotL <c>.N' x) ∧ y=u ∧ N'[x⊢n>y] = N)"
using a
apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(coname,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_NotL_aux:
assumes a: "R[x⊢n>y] = NotL <c>.N u"
shows "(x=u ∧ x=y) ∨ (x≠u)"
using a
apply(nominal_induct R avoiding: y u c x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_AndL1:
assumes a: "R[x⊢n>y] = AndL1 (z).N u" "z♯(R,x,y)" "u♯(x,y)"
shows "∃N'. (R = AndL1 (z).N' u) ∧ N'[x⊢n>y] = N"
using a
apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,z)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL1':
assumes a: "R[x⊢n>y] = AndL1 (v).N u" "v♯(R,u,x,y)" "x≠y"
shows "(∃N'. (R = AndL1 (v).N' u) ∧ N'[x⊢n>y] = N) ∨ (∃N'. (R = AndL1 (v).N' x) ∧ y=u ∧ N'[x⊢n>y] = N)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name1,v)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name1,v)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL1_aux:
assumes a: "R[x⊢n>y] = AndL1 (v).N u"
shows "(x=u ∧ x=y) ∨ (x≠u)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_AndL2:
assumes a: "R[x⊢n>y] = AndL2 (z).N u" "z♯(R,x,y)" "u♯(x,y)"
shows "∃N'. (R = AndL2 (z).N' u) ∧ N'[x⊢n>y] = N"
using a
apply(nominal_induct R avoiding: z u x y N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name1,z)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL2':
assumes a: "R[x⊢n>y] = AndL2 (v).N u" "v♯(R,u,x,y)" "x≠y"
shows "(∃N'. (R = AndL2 (v).N' u) ∧ N'[x⊢n>y] = N) ∨ (∃N'. (R = AndL2 (v).N' x) ∧ y=u ∧ N'[x⊢n>y] = N)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name1,v)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name1,v)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_AndL2_aux:
assumes a: "R[x⊢n>y] = AndL2 (v).N u"
shows "(x=u ∧ x=y) ∨ (x≠u)"
using a
apply(nominal_induct R avoiding: y u v x N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_AndR:
assumes a: "R[x⊢n>y] = AndR <c>.M <d>.N e" "c♯(d,e,N,R)" "d♯(c,e,M,R)"
shows "∃M' N'. R = AndR <c>.M' <d>.N' e ∧ M'[x⊢n>y] = M ∧ N'[x⊢n>y] = N ∧ c♯N' ∧ d♯M'"
using a
apply(nominal_induct R avoiding: x y c d e M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha)
apply(simp add: fresh_atm fresh_prod)
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname1,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(coname2,d)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x⊢n>y]" in sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrR1:
assumes a: "R[x⊢n>y] = OrR1 <c>.N d" "c♯(R,d)"
shows "∃N'. (R = OrR1 <c>.N' d) ∧ N'[x⊢n>y] = N"
using a
apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrR2:
assumes a: "R[x⊢n>y] = OrR2 <c>.N d" "c♯(R,d)"
shows "∃N'. (R = OrR2 <c>.N' d) ∧ N'[x⊢n>y] = N"
using a
apply(nominal_induct R avoiding: x y c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
apply(rule_tac x="[(coname1,c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrL:
assumes a: "R[u⊢n>v] = OrL (x).M (y).N z" "x♯(y,z,u,v,N,R)" "y♯(x,z,u,v,M,R)" "z♯(u,v)"
shows "∃M' N'. R = OrL (x).M' (y).N' z ∧ M'[u⊢n>v] = M ∧ N'[u⊢n>v] = N ∧ x♯N' ∧ y♯M'"
using a
apply(nominal_induct R avoiding: u v x y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
apply(rule_tac x="[(name1,x)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name2,y)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[u⊢n>v]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrL':
assumes a: "R[x⊢n>y] = OrL (v).M (w).N u" "v♯(R,N,u,x,y)" "w♯(R,M,u,x,y)" "x≠y"
shows "(∃M' N'. (R = OrL (v).M' (w).N' u) ∧ M'[x⊢n>y] = M ∧ N'[x⊢n>y] = N) ∨
(∃M' N'. (R = OrL (v).M' (w).N' x) ∧ y=u ∧ M'[x⊢n>y] = M ∧ N'[x⊢n>y] = N)"
using a [[simproc del: defined_all]]
apply(nominal_induct R avoiding: y x u v w M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(name1,v)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name2,w)]∙trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x⊢n>u]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(name1,v)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name2,w)]∙trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x⊢n>y]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_OrL_aux:
assumes a: "R[x⊢n>y] = OrL (v).M (w).N u"
shows "(x=u ∧ x=y) ∨ (x≠u)"
using a
apply(nominal_induct R avoiding: y x w u v M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_ImpL:
assumes a: "R[x⊢n>y] = ImpL <c>.M (u).N z" "c♯(N,R)" "u♯(y,x,z,M,R)" "z♯(x,y)"
shows "∃M' N'. R = ImpL <c>.M' (u).N' z ∧ M'[x⊢n>y] = M ∧ N'[x⊢n>y] = N ∧ c♯N' ∧ u♯M'"
using a
apply(nominal_induct R avoiding: u x c y z M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: trm.inject alpha fresh_prod fresh_atm)
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(rule_tac x="[(name1,u)]∙trm2" in exI)
apply(perm_simp)
apply(auto simp add: abs_fresh fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x⊢n>y]" in sym)
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm fresh_prod fresh_atm)
done
lemma nrename_ImpL':
assumes a: "R[x⊢n>y] = ImpL <c>.M (w).N u" "c♯(R,N)" "w♯(R,M,u,x,y)" "x≠y"
shows "(∃M' N'. (R = ImpL <c>.M' (w).N' u) ∧ M'[x⊢n>y] = M ∧ N'[x⊢n>y] = N) ∨
(∃M' N'. (R = ImpL <c>.M' (w).N' x) ∧ y=u ∧ M'[x⊢n>y] = M ∧ N'[x⊢n>y] = N)"
using a [[simproc del: defined_all]]
apply(nominal_induct R avoiding: y x u c w M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_fresh alpha trm.inject)
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name1,w)]∙trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x⊢n>u]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
apply(rule_tac x="[(coname,c)]∙trm1" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name1,w)]∙trm2" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule conjI)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(simp add: eqvts calc_atm)
apply(drule_tac s="trm2[x⊢n>y]" in sym)
apply(drule_tac pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_ImpL_aux:
assumes a: "R[x⊢n>y] = ImpL <c>.M (w).N u"
shows "(x=u ∧ x=y) ∨ (x≠u)"
using a
apply(nominal_induct R avoiding: y x w u c M N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm alpha abs_fresh trm.inject)
done
lemma nrename_ImpR:
assumes a: "R[u⊢n>v] = ImpR (x).<c>.N d" "c♯(R,d)" "x♯(R,u,v)"
shows "∃N'. (R = ImpR (x).<c>.N' d) ∧ N'[u⊢n>v] = N"
using a
apply(nominal_induct R avoiding: u v x c d N rule: trm.strong_induct)
apply(auto split: if_splits simp add: fresh_prod fresh_atm abs_perm alpha abs_fresh trm.inject)
apply(rule_tac x="[(name,x)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_fresh fresh_left calc_atm fresh_prod)
apply(rule_tac x="[(name,x)]∙[(coname1, c)]∙trm" in exI)
apply(perm_simp)
apply(simp add: abs_supp fin_supp abs_fresh fresh_left calc_atm fresh_prod)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst,OF at_coname_inst])
apply(drule pt_bij1[OF pt_name_inst,OF at_name_inst])
apply(simp add: eqvts calc_atm)
done
lemma nrename_credu:
assumes a: "(M[x⊢n>y]) ⟶⇩c M'"
shows "∃M0. M0[x⊢n>y]=M' ∧ M ⟶⇩c M0"
using a
apply(nominal_induct M≡"M[x⊢n>y]" M' avoiding: M x y rule: c_redu.strong_induct)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="M'{a:=(x).N'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto dest: not_fic_nrename)[1]
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)
apply(rule_tac x="N'{x:=<a>.M'}" in exI)
apply(rule conjI)
apply(simp add: fresh_atm abs_fresh subst_comm fresh_prod)
apply(rule c_redu.intros)
apply(auto)
apply(drule_tac x="xa" and y="y" in fin_nrename)
apply(auto simp add: fresh_prod abs_fresh)
done
lemma nrename_ax2:
assumes a: "N[x⊢n>y] = Ax z c"
shows "∃z. N = Ax z c"
using a
apply(nominal_induct N avoiding: x y rule: trm.strong_induct)
apply(auto split: if_splits)
apply(simp add: trm.inject)
done
lemma fic_nrename:
assumes a: "fic (M[x⊢n>y]) c"
shows "fic M c"
using a
apply(nominal_induct M avoiding: c x y rule: trm.strong_induct)
apply(auto dest!: fic_elims intro!: fic.intros simp add: fresh_prod fresh_atm rename_fresh abs_fresh
split: if_splits)
apply(auto dest: nrename_fresh_interesting2 simp add: fresh_prod fresh_atm)
done
lemma nrename_lredu:
assumes a: "(M[x⊢n>y]) ⟶⇩l M'"
shows "∃M0. M0[x⊢n>y]=M' ∧ M ⟶⇩l M0"
using a
apply(nominal_induct M≡"M[x⊢n>y]" M' avoiding: M x y rule: l_redu.strong_induct)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "xa=y")
apply(simp add: nrename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule nrename_ax2)
apply(auto)[1]
apply(case_tac "z=xa")
apply(simp add: trm.inject)
apply(simp)
apply(rule_tac x="M'[a⊢c>b]" in exI)
apply(rule conjI)
apply(rule crename_interesting3)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fic_nrename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(case_tac "xa=ya")
apply(simp add: nrename_id)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(assumption)
apply(frule nrename_ax2)
apply(auto)[1]
apply(case_tac "z=xa")
apply(simp add: trm.inject)
apply(rule_tac x="N'[x⊢n>xa]" in exI)
apply(rule conjI)
apply(rule nrename_interesting1)
apply(auto)[1]
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule_tac x="N'[x⊢n>y]" in exI)
apply(rule conjI)
apply(rule nrename_interesting2)
apply(simp_all)
apply(rule l_redu.intros)
apply(simp)
apply(simp add: fresh_atm)
apply(auto dest: fin_nrename2 simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_NotR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_NotL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <b>.N'b (x).N'a" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_prod fresh_atm intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting2)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_AndL1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a1>.M'a (x).N'b" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_AndR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_AndL2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a2>.N'a (x).N'b" in exI)
apply(simp add: fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_OrR1)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.N' (x1).M'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto)[1]
apply(drule nrename_OrL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_OrR2)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.N' (x2).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm fresh_prod intro: nrename_fresh_interesting1)[1]
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(auto dest: fin_crename simp add: fresh_prod fresh_atm)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm abs_supp fin_supp)
apply(auto)[1]
apply(drule nrename_ImpL)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(drule nrename_ImpR)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(simp add: fresh_prod abs_fresh fresh_atm)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)[1]
apply(rule_tac x="Cut <a>.(Cut <c>.M'a (x).N') (y).N'a" in exI)
apply(rule conjI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule l_redu.intros)
apply(auto simp add: fresh_atm abs_fresh abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting1)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
apply(auto simp add: abs_fresh fresh_atm abs_supp fin_supp fresh_prod intro: nrename_fresh_interesting2)[1]
done
lemma nrename_aredu:
assumes a: "(M[x⊢n>y]) ⟶⇩a M'" "x≠y"
shows "∃M0. M0[x⊢n>y]=M' ∧ M ⟶⇩a M0"
using a
apply(nominal_induct "M[x⊢n>y]" M' avoiding: M x y rule: a_redu.strong_induct)
apply(drule nrename_lredu)
apply(blast)
apply(drule nrename_credu)
apply(blast)
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M0 (x).N'" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule nrename.simps)
apply(drule nrename_fresh_interesting2)
apply(simp add: fresh_a_redu)
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule nrename_fresh_interesting1)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_a_redu)
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(drule nrename_Cut)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="Cut <a>.M' (x).M0" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(rule conjI)
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: fresh_a_redu)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(frule nrename_NotL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_NotL')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotL <a>.M0 x" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotL <a>.M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(drule nrename_NotR)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="NotR (x).M0 a" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(drule nrename_AndR)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M0 <b>.N' c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(drule sym)
apply(drule nrename_AndR)
apply(simp)
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto simp add: fresh_atm fresh_prod)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndR <a>.M' <b>.M0 c" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(simp)
apply(drule sym)
apply(frule nrename_AndL1_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_AndL1')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL1 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL1 (x).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(frule nrename_AndL2_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_AndL2')
apply(simp)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL2 (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="AndL2 (x).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(frule nrename_OrL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_OrL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M0 (y).N' z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M0 (y).N' xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(frule nrename_OrL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_OrL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M' (y).M0 z" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrL (x).M' (y).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm fresh_prod)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp)
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(drule nrename_OrR1)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR1 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(drule nrename_OrR2)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="OrR2 <a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule sym)
apply(frule nrename_ImpL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_ImpL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M0 (x).N' y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M0 (x).N' xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(frule nrename_ImpL_aux)
apply(erule disjE)
apply(auto)[1]
apply(drule nrename_ImpL')
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_atm)
apply(simp add: fresh_atm)
apply(erule disjE)
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="ya" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M' (x).M0 y" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(drule_tac x="N'a" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpL <a>.M' (x).M0 xa" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
apply(rule trans)
apply(rule nrename.simps)
apply(auto intro: fresh_a_redu)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(simp add: fresh_prod abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(drule sym)
apply(drule nrename_ImpR)
apply(simp)
apply(simp)
apply(auto)[1]
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(auto)[1]
apply(rule_tac x="ImpR (x).<a>.M0 b" in exI)
apply(simp add: abs_fresh abs_supp fin_supp fresh_atm)[1]
apply(auto)[1]
done
lemma SNa_preserved_renaming2:
assumes a: "SNa N"
shows "SNa (N[x⊢n>y])"
using a
apply(induct rule: SNa_induct)
apply(case_tac "x=y")
apply(simp add: nrename_id)
apply(rule SNaI)
apply(drule nrename_aredu)
apply(blast)+
done
text ‹helper-stuff to set up the induction›
abbreviation
SNa_set :: "trm set"
where
"SNa_set ≡ {M. SNa M}"
abbreviation
A_Redu_set :: "(trm×trm) set"
where
"A_Redu_set ≡ {(N,M)| M N. M ⟶⇩a N}"
lemma SNa_elim:
assumes a: "SNa M"
shows "(∀M. (∀N. M ⟶⇩a N ⟶ P N)⟶ P M) ⟶ P M"
using a
by (induct rule: SNa.induct) (blast)
lemma wf_SNa_restricted:
shows "wf (A_Redu_set ∩ (UNIV × SNa_set))"
apply(unfold wf_def)
apply(intro strip)
apply(case_tac "SNa x")
apply(simp (no_asm_use))
apply(drule_tac P="P" in SNa_elim)
apply(erule mp)
apply(blast)
apply(drule_tac x="x" in spec)
apply(erule mp)
apply(fast)
done
definition SNa_Redu :: "(trm × trm) set" where
"SNa_Redu ≡ A_Redu_set ∩ (UNIV × SNa_set)"
lemma wf_SNa_Redu:
shows "wf SNa_Redu"
apply(unfold SNa_Redu_def)
apply(rule wf_SNa_restricted)
done
lemma wf_measure_triple:
shows "wf ((measure size) <*lex*> SNa_Redu <*lex*> SNa_Redu)"
by (auto intro: wf_SNa_Redu)
lemma my_wf_induct_triple:
assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"
and b: "⋀x. ⟦⋀y. ((fst y,fst (snd y),snd (snd y)),(fst x,fst (snd x), snd (snd x)))
∈ (r1 <*lex*> r2 <*lex*> r3) ⟶ P y⟧ ⟹ P x"
shows "P x"
using a
apply(induct x rule: wf_induct_rule)
apply(rule b)
apply(simp)
done
lemma my_wf_induct_triple':
assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"
and b: "⋀x1 x2 x3. ⟦⋀y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) ∈ (r1 <*lex*> r2 <*lex*> r3) ⟶ P (y1,y2,y3)⟧
⟹ P (x1,x2,x3)"
shows "P (x1,x2,x3)"
apply(rule_tac my_wf_induct_triple[OF a])
apply(case_tac x rule: prod.exhaust)
apply(simp)
apply(rename_tac p a b)
apply(case_tac b)
apply(simp)
apply(rule b)
apply(blast)
done
lemma my_wf_induct_triple'':
assumes a: " wf(r1 <*lex*> r2 <*lex*> r3)"
and b: "⋀x1 x2 x3. ⟦⋀y1 y2 y3. ((y1,y2,y3),(x1,x2,x3)) ∈ (r1 <*lex*> r2 <*lex*> r3) ⟶ P y1 y2 y3⟧
⟹ P x1 x2 x3"
shows "P x1 x2 x3"
apply(rule_tac my_wf_induct_triple'[where P="λ(x1,x2,x3). P x1 x2 x3", simplified])
apply(rule a)
apply(rule b)
apply(auto)
done
lemma excluded_m:
assumes a: "<a>:M ∈ (∥<B>∥)" "(x):N ∈ (∥(B)∥)"
shows "(<a>:M ∈ BINDINGc B (∥(B)∥) ∨ (x):N ∈ BINDINGn B (∥<B>∥))
∨¬(<a>:M ∈ BINDINGc B (∥(B)∥) ∨ (x):N ∈ BINDINGn B (∥<B>∥))"
by (blast)
text ‹The following two simplification rules are necessary because of the
new definition of lexicographic ordering›
lemma ne_and_SNa_Redu[simp]: "M ≠ x ∧ (M,x) ∈ SNa_Redu ⟷ (M,x) ∈ SNa_Redu"
using wf_SNa_Redu by auto
lemma ne_and_less_size [simp]: "A ≠ B ∧ size A < size B ⟷ size A < size B"
by auto
lemma tricky_subst:
assumes a1: "b♯(c,N)"
and a2: "z♯(x,P)"
and a3: "M≠Ax z b"
shows "(Cut <c>.N (z).M){b:=(x).P} = Cut <c>.N (z).(M{b:=(x).P})"
using a1 a2 a3
apply -
apply(generate_fresh "coname")
apply(subgoal_tac "Cut <c>.N (z).M = Cut <ca>.([(ca,c)]∙N) (z).M")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(simp)
apply(subgoal_tac "b♯([(ca,c)]∙N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha fresh_prod fresh_atm)
done
text ‹3rd lemma›
lemma CUT_SNa_aux:
assumes a1: "<a>:M ∈ (∥<B>∥)"
and a2: "SNa M"
and a3: "(x):N ∈ (∥(B)∥)"
and a4: "SNa N"
shows "SNa (Cut <a>.M (x).N)"
using a1 a2 a3 a4 [[simproc del: defined_all]]
apply(induct B M N arbitrary: a x rule: my_wf_induct_triple''[OF wf_measure_triple])
apply(rule SNaI)
apply(drule Cut_a_redu_elim)
apply(erule disjE)
apply(erule exE)
apply(erule conjE)+
apply(simp)
apply(drule_tac x="x1" in meta_spec)
apply(drule_tac x="M'a" in meta_spec)
apply(drule_tac x="x3" in meta_spec)
apply(drule conjunct2)
apply(drule mp)
apply(rule conjI)
apply(simp)
apply(rule disjI1)
apply(simp add: SNa_Redu_def)
apply(drule_tac x="a" in spec)
apply(drule mp)
apply(simp add: CANDs_preserved_single)
apply(drule mp)
apply(simp add: a_preserves_SNa)
apply(drule_tac x="x" in spec)
apply(simp)
apply(erule disjE)
apply(erule exE)
apply(erule conjE)+
apply(simp)
apply(drule_tac x="x1" in meta_spec)
apply(drule_tac x="x2" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule conjunct2)
apply(drule mp)
apply(rule conjI)
apply(simp)
apply(rule disjI2)
apply(simp add: SNa_Redu_def)
apply(drule_tac x="a" in spec)
apply(drule mp)
apply(simp add: CANDs_preserved_single)
apply(drule mp)
apply(assumption)
apply(drule_tac x="x" in spec)
apply(drule mp)
apply(simp add: CANDs_preserved_single)
apply(drule mp)
apply(simp add: a_preserves_SNa)
apply(assumption)
apply(erule disjE)
apply(drule Cut_c_redu_elim)
apply(erule disjE)
apply(erule conjE)
apply(frule_tac B="x1" in fic_CANDS)
apply(simp)
apply(erule disjE)
apply(simp add: AXIOMSc_def)
apply(erule exE)+
apply(simp add: ctrm.inject)
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fic (Ax y b) b")
apply(simp)
apply(auto)[1]
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fic (Ax ([(a,aa)]∙y) a) a")
apply(simp)
apply(auto)[1]
apply(simp)
apply(drule BINDINGc_elim)
apply(simp)
apply(erule conjE)
apply(frule_tac B="x1" in fin_CANDS)
apply(simp)
apply(erule disjE)
apply(simp add: AXIOMSn_def)
apply(erule exE)+
apply(simp add: ntrm.inject)
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fin (Ax xa b) xa")
apply(simp)
apply(auto)[1]
apply(simp)
apply(rule impI)
apply(simp)
apply(subgoal_tac "fin (Ax x ([(x,xa)]∙b)) x")
apply(simp)
apply(auto)[1]
apply(simp)
apply(drule BINDINGn_elim)
apply(simp)
apply(drule Cut_l_redu_elim)
apply(erule disjE)
apply(erule exE)
apply(simp)
apply(simp add: SNa_preserved_renaming1)
apply(erule disjE)
apply(erule exE)
apply(simp add: SNa_preserved_renaming2)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="NotL <b>.N' x" in spec)
apply(simp)
apply(simp add: better_NotR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (λa'. Cut <a'>.NotR (y).M'a a' (x).NotL <b>.N' x)
= Cut <c>.NotR (y).M'a c (x).NotL <b>.N' x")
apply(simp)
apply(subgoal_tac "Cut <c>.NotR (y).M'a c (x).NotL <b>.N' x ⟶⇩a Cut <b>.N' (y).M'a")
apply(simp only: a_preserves_SNa)
apply(rule al_redu)
apply(rule better_LNot_intro)
apply(simp)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="NotR (y).M'a a" in spec)
apply(simp)
apply(simp add: better_NotL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (λx'. Cut <a>.NotR (y).M'a a (x').NotL <b>.N' x')
= Cut <a>.NotR (y).M'a a (c).NotL <b>.N' c")
apply(simp)
apply(subgoal_tac "Cut <a>.NotR (y).M'a a (c).NotL <b>.N' c ⟶⇩a Cut <b>.N' (y).M'a")
apply(simp only: a_preserves_SNa)
apply(rule al_redu)
apply(rule better_LNot_intro)
apply(simp)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(simp)
apply(erule conjE)
apply(frule CAND_NotR_elim)
apply(assumption)
apply(erule exE)
apply(frule CAND_NotL_elim)
apply(assumption)
apply(erule exE)
apply(simp only: ty.inject)
apply(drule_tac x="B'" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="M'a" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 13)
apply(drule mp)
apply(assumption)
apply(rotate_tac 13)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 13)
apply(drule mp)
apply(assumption)
apply(rotate_tac 13)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="AndL1 (y).N' x" in spec)
apply(simp)
apply(simp add: better_AndR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (λa'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL1 (y).N' x)
= Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL1 (y).N' x")
apply(simp)
apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL1 (y).N' x ⟶⇩a Cut <b>.M1 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
apply(simp)
apply(simp add: better_AndL1_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (λz'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL1 (y).N' z')
= Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL1 (y).N' ca")
apply(simp)
apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL1 (y).N' ca ⟶⇩a Cut <b>.M1 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(simp)
apply(erule conjE)
apply(frule CAND_AndR_elim)
apply(assumption)
apply(erule exE)
apply(frule CAND_AndL1_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B1" in meta_spec)
apply(drule_tac x="M1" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 14)
apply(drule mp)
apply(assumption)
apply(rotate_tac 14)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="AndL2 (y).N' x" in spec)
apply(simp)
apply(simp add: better_AndR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (λa'. Cut <a'>.AndR <b>.M1 <c>.M2 a' (x).AndL2 (y).N' x)
= Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL2 (y).N' x")
apply(simp)
apply(subgoal_tac "Cut <ca>.AndR <b>.M1 <c>.M2 ca (x).AndL2 (y).N' x ⟶⇩a Cut <c>.M2 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="AndR <b>.M1 <c>.M2 a" in spec)
apply(simp)
apply(simp add: better_AndL2_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (λz'. Cut <a>.AndR <b>.M1 <c>.M2 a (z').AndL2 (y).N' z')
= Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL2 (y).N' ca")
apply(simp)
apply(subgoal_tac "Cut <a>.AndR <b>.M1 <c>.M2 a (ca).AndL2 (y).N' ca ⟶⇩a Cut <c>.M2 (y).N'")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LAnd2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(simp)
apply(erule conjE)
apply(frule CAND_AndR_elim)
apply(assumption)
apply(erule exE)
apply(frule CAND_AndL2_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="M2" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="c" in spec)
apply(rotate_tac 14)
apply(drule mp)
apply(assumption)
apply(rotate_tac 14)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
apply(simp)
apply(simp add: better_OrR1_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (λa'. Cut <a'>.OrR1 <b>.N' a' (x).OrL (z).M1 (y).M2 x)
= Cut <c>.OrR1 <b>.N' c (x).OrL (z).M1 (y).M2 x")
apply(simp)
apply(subgoal_tac "Cut <c>.OrR1 <b>.N' c (x).OrL (z).M1 (y).M2 x ⟶⇩a Cut <b>.N' (z).M1")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="OrR1 <b>.N' a" in spec)
apply(simp)
apply(simp add: better_OrL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (λz'. Cut <a>.OrR1 <b>.N' a (z').OrL (z).M1 (y).M2 z')
= Cut <a>.OrR1 <b>.N' a (c).OrL (z).M1 (y).M2 c")
apply(simp)
apply(subgoal_tac "Cut <a>.OrR1 <b>.N' a (c).OrL (z).M1 (y).M2 c ⟶⇩a Cut <b>.N' (z).M1")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr1_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(simp)
apply(erule conjE)
apply(frule CAND_OrR1_elim)
apply(assumption)
apply(erule exE)+
apply(frule CAND_OrL_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B1" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="M1" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="z" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(erule disjE)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="OrL (z).M1 (y).M2 x" in spec)
apply(simp)
apply(simp add: better_OrR2_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (λa'. Cut <a'>.OrR2 <b>.N' a' (x).OrL (z).M1 (y).M2 x)
= Cut <c>.OrR2 <b>.N' c (x).OrL (z).M1 (y).M2 x")
apply(simp)
apply(subgoal_tac "Cut <c>.OrR2 <b>.N' c (x).OrL (z).M1 (y).M2 x ⟶⇩a Cut <b>.N' (y).M2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="OrR2 <b>.N' a" in spec)
apply(simp)
apply(simp add: better_OrL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (λz'. Cut <a>.OrR2 <b>.N' a (z').OrL (z).M1 (y).M2 z')
= Cut <a>.OrR2 <b>.N' a (c).OrL (z).M1 (y).M2 c")
apply(simp)
apply(subgoal_tac "Cut <a>.OrR2 <b>.N' a (c).OrL (z).M1 (y).M2 c ⟶⇩a Cut <b>.N' (y).M2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LOr2_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(simp)
apply(erule conjE)
apply(frule CAND_OrR2_elim)
apply(assumption)
apply(erule exE)+
apply(frule CAND_OrL_elim)
apply(assumption)
apply(erule exE)+
apply(simp only: ty.inject)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="N'" in meta_spec)
apply(drule_tac x="M2" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(drule_tac x="b" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(drule_tac x="y" in spec)
apply(rotate_tac 15)
apply(drule mp)
apply(assumption)
apply(rotate_tac 15)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(erule exE)+
apply(auto)[1]
apply(frule_tac excluded_m)
apply(assumption)
apply(erule disjE)
apply(erule disjE)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGc_elim)
apply(drule_tac x="x" in spec)
apply(drule_tac x="ImpL <c>.N1 (y).N2 x" in spec)
apply(simp)
apply(simp add: better_ImpR_substc)
apply(generate_fresh "coname")
apply(subgoal_tac "fresh_fun (λa'. Cut <a'>.ImpR (z).<b>.M'a a' (x).ImpL <c>.N1 (y).N2 x)
= Cut <ca>.ImpR (z).<b>.M'a ca (x).ImpL <c>.N1 (y).N2 x")
apply(simp)
apply(subgoal_tac "Cut <ca>.ImpR (z).<b>.M'a ca (x).ImpL <c>.N1 (y).N2 x ⟶⇩a
Cut <b>.Cut <c>.N1 (z).M'a (y).N2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LImp_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp)
apply(drule fin_elims)
apply(drule fic_elims)
apply(simp)
apply(drule BINDINGn_elim)
apply(drule_tac x="a" in spec)
apply(drule_tac x="ImpR (z).<b>.M'a a" in spec)
apply(simp)
apply(simp add: better_ImpL_substn)
apply(generate_fresh "name")
apply(subgoal_tac "fresh_fun (λz'. Cut <a>.ImpR (z).<b>.M'a a (z').ImpL <c>.N1 (y).N2 z')
= Cut <a>.ImpR (z).<b>.M'a a (ca).ImpL <c>.N1 (y).N2 ca")
apply(simp)
apply(subgoal_tac "Cut <a>.ImpR (z).<b>.M'a a (ca).ImpL <c>.N1 (y).N2 ca ⟶⇩a
Cut <b>.Cut <c>.N1 (z).M'a (y).N2")
apply(auto intro: a_preserves_SNa)[1]
apply(rule al_redu)
apply(rule better_LImp_intro)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(simp)
apply(fresh_fun_simp (no_asm))
apply(simp add: abs_fresh abs_supp fin_supp)
apply(simp add: abs_fresh abs_supp fin_supp)
apply(simp)
apply(erule conjE)
apply(frule CAND_ImpL_elim)
apply(assumption)
apply(erule exE)+
apply(frule CAND_ImpR_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)+
apply(simp only: ty.inject)
apply(erule conjE)+
apply(case_tac "M'a=Ax z b")
apply(rule_tac t="Cut <b>.(Cut <c>.N1 (z).M'a) (y).N2" and s="Cut <b>.(M'a{z:=<c>.N1}) (y).N2" in subst)
apply(simp)
apply(drule_tac x="c" in spec)
apply(drule_tac x="N1" in spec)
apply(drule mp)
apply(simp)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="M'a{z:=<c>.N1}" in meta_spec)
apply(drule_tac x="N2" in meta_spec)
apply(drule conjunct1)
apply(drule mp)
apply(simp)
apply(rotate_tac 17)
apply(drule_tac x="b" in spec)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(rotate_tac 17)
apply(drule_tac x="y" in spec)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a ∈ ∥<B2>∥")
apply(frule_tac meta_spec)
apply(drule_tac x="B2" in meta_spec)
apply(drule_tac x="Cut <c>.N1 (z).M'a" in meta_spec)
apply(drule_tac x="N2" in meta_spec)
apply(erule conjE)+
apply(drule mp)
apply(simp)
apply(rotate_tac 20)
apply(drule_tac x="b" in spec)
apply(rotate_tac 20)
apply(drule mp)
apply(assumption)
apply(rotate_tac 20)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(rotate_tac 20)
apply(drule_tac x="y" in spec)
apply(rotate_tac 20)
apply(drule mp)
apply(assumption)
apply(rotate_tac 20)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(subgoal_tac "<b>:Cut <c>.N1 (z).M'a ∈ BINDINGc B2 (∥(B2)∥)")
apply(simp add: BINDING_implies_CAND)
apply(simp (no_asm) add: BINDINGc_def)
apply(rule exI)+
apply(rule conjI)
apply(rule refl)
apply(rule allI)+
apply(rule impI)
apply(generate_fresh "name")
apply(rule_tac t="Cut <c>.N1 (z).M'a" and s="Cut <c>.N1 (ca).([(ca,z)]∙M'a)" in subst)
apply(simp add: trm.inject alpha fresh_prod fresh_atm)
apply(rule_tac t="(Cut <c>.N1 (ca).([(ca,z)]∙M'a)){b:=(xa).P}"
and s="Cut <c>.N1 (ca).(([(ca,z)]∙M'a){b:=(xa).P})" in subst)
apply(rule sym)
apply(rule tricky_subst)
apply(simp)
apply(simp)
apply(clarify)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm)
apply(drule_tac x="B1" in meta_spec)
apply(drule_tac x="N1" in meta_spec)
apply(drule_tac x="([(ca,z)]∙M'a){b:=(xa).P}" in meta_spec)
apply(drule conjunct1)
apply(drule mp)
apply(simp)
apply(rotate_tac 19)
apply(drule_tac x="c" in spec)
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(rotate_tac 19)
apply(drule_tac x="ca" in spec)
apply(subgoal_tac "(ca):([(ca,z)]∙M'a){b:=(xa).P} ∈ ∥(B1)∥")
apply(drule mp)
apply(assumption)
apply(drule mp)
apply(simp add: CANDs_imply_SNa)
apply(assumption)
apply(drule_tac x="[(ca,z)]∙xa" in spec)
apply(drule_tac x="[(ca,z)]∙P" in spec)
apply(rotate_tac 19)
apply(simp add: fresh_prod fresh_left)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm)[1]
apply(rule conjI)
apply(auto simp add: calc_atm)[1]
apply(drule_tac pi="[(ca,z)]" and x="(xa):P" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name)
apply(drule_tac pi="[(ca,z)]" and X="∥(B1)∥" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name csubst_eqvt)
apply(perm_simp)
done
lemma CUT_SNa:
assumes a1: "<a>:M ∈ (∥<B>∥)"
and a2: "(x):N ∈ (∥(B)∥)"
shows "SNa (Cut <a>.M (x).N)"
using a1 a2
apply -
apply(rule CUT_SNa_aux[OF a1])
apply(simp_all add: CANDs_imply_SNa)
done
fun
findn :: "(name×coname×trm) list⇒name⇒(coname×trm) option"
where
"findn [] x = None"
| "findn ((y,c,P)#θ_n) x = (if y=x then Some (c,P) else findn θ_n x)"
lemma findn_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙findn θ_n x) = findn (pi1∙θ_n) (pi1∙x)"
and "(pi2∙findn θ_n x) = findn (pi2∙θ_n) (pi2∙x)"
apply(induct θ_n)
apply(auto simp add: perm_bij)
done
lemma findn_fresh:
assumes a: "x♯θ_n"
shows "findn θ_n x = None"
using a
apply(induct θ_n)
apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
done
fun
findc :: "(coname×name×trm) list⇒coname⇒(name×trm) option"
where
"findc [] x = None"
| "findc ((c,y,P)#θ_c) a = (if a=c then Some (y,P) else findc θ_c a)"
lemma findc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙findc θ_c a) = findc (pi1∙θ_c) (pi1∙a)"
and "(pi2∙findc θ_c a) = findc (pi2∙θ_c) (pi2∙a)"
apply(induct θ_c)
apply(auto simp add: perm_bij)
done
lemma findc_fresh:
assumes a: "a♯θ_c"
shows "findc θ_c a = None"
using a
apply(induct θ_c)
apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
done
abbreviation
nmaps :: "(name×coname×trm) list ⇒ name ⇒ (coname×trm) option ⇒ bool" ("_ nmaps _ to _" [55,55,55] 55)
where
"θ_n nmaps x to P ≡ (findn θ_n x) = P"
abbreviation
cmaps :: "(coname×name×trm) list ⇒ coname ⇒ (name×trm) option ⇒ bool" ("_ cmaps _ to _" [55,55,55] 55)
where
"θ_c cmaps a to P ≡ (findc θ_c a) = P"
lemma nmaps_fresh:
shows "θ_n nmaps x to Some (c,P) ⟹ a♯θ_n ⟹ a♯(c,P)"
apply(induct θ_n)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "aa=x")
apply(auto)
apply(case_tac "aa=x")
apply(auto)
done
lemma cmaps_fresh:
shows "θ_c cmaps a to Some (y,P) ⟹ x♯θ_c ⟹ x♯(y,P)"
apply(induct θ_c)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "a=aa")
apply(auto)
apply(case_tac "a=aa")
apply(auto)
done
lemma nmaps_false:
shows "θ_n nmaps x to Some (c,P) ⟹ x♯θ_n ⟹ False"
apply(induct θ_n)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma cmaps_false:
shows "θ_c cmaps c to Some (x,P) ⟹ c♯θ_c ⟹ False"
apply(induct θ_c)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
fun
lookupa :: "name⇒coname⇒(coname×name×trm) list⇒trm"
where
"lookupa x a [] = Ax x a"
| "lookupa x a ((c,y,P)#θ_c) = (if a=c then Cut <a>.Ax x a (y).P else lookupa x a θ_c)"
lemma lookupa_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(lookupa x a θ_c)) = lookupa (pi1∙x) (pi1∙a) (pi1∙θ_c)"
and "(pi2∙(lookupa x a θ_c)) = lookupa (pi2∙x) (pi2∙a) (pi2∙θ_c)"
apply -
apply(induct θ_c)
apply(auto simp add: eqvts)
apply(induct θ_c)
apply(auto simp add: eqvts)
done
lemma lookupa_fire:
assumes a: "θ_c cmaps a to Some (y,P)"
shows "(lookupa x a θ_c) = Cut <a>.Ax x a (y).P"
using a
apply(induct θ_c arbitrary: x a y P)
apply(auto)
done
fun
lookupb :: "name⇒coname⇒(coname×name×trm) list⇒coname⇒trm⇒trm"
where
"lookupb x a [] c P = Cut <c>.P (x).Ax x a"
| "lookupb x a ((d,y,N)#θ_c) c P = (if a=d then Cut <c>.P (y).N else lookupb x a θ_c c P)"
lemma lookupb_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(lookupb x a θ_c c P)) = lookupb (pi1∙x) (pi1∙a) (pi1∙θ_c) (pi1∙c) (pi1∙P)"
and "(pi2∙(lookupb x a θ_c c P)) = lookupb (pi2∙x) (pi2∙a) (pi2∙θ_c) (pi2∙c) (pi2∙P)"
apply -
apply(induct θ_c)
apply(auto simp add: eqvts)
apply(induct θ_c)
apply(auto simp add: eqvts)
done
fun
lookup :: "name⇒coname⇒(name×coname×trm) list⇒(coname×name×trm) list⇒trm"
where
"lookup x a [] θ_c = lookupa x a θ_c"
| "lookup x a ((y,c,P)#θ_n) θ_c = (if x=y then (lookupb x a θ_c c P) else lookup x a θ_n θ_c)"
lemma lookup_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(lookup x a θ_n θ_c)) = lookup (pi1∙x) (pi1∙a) (pi1∙θ_n) (pi1∙θ_c)"
and "(pi2∙(lookup x a θ_n θ_c)) = lookup (pi2∙x) (pi2∙a) (pi2∙θ_n) (pi2∙θ_c)"
apply -
apply(induct θ_n)
apply(auto simp add: eqvts)
apply(induct θ_n)
apply(auto simp add: eqvts)
done
fun
lookupc :: "name⇒coname⇒(name×coname×trm) list⇒trm"
where
"lookupc x a [] = Ax x a"
| "lookupc x a ((y,c,P)#θ_n) = (if x=y then P[c⊢c>a] else lookupc x a θ_n)"
lemma lookupc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(lookupc x a θ_n)) = lookupc (pi1∙x) (pi1∙a) (pi1∙θ_n)"
and "(pi2∙(lookupc x a θ_n)) = lookupc (pi2∙x) (pi2∙a) (pi2∙θ_n)"
apply -
apply(induct θ_n)
apply(auto simp add: eqvts)
apply(induct θ_n)
apply(auto simp add: eqvts)
done
fun
lookupd :: "name⇒coname⇒(coname×name×trm) list⇒trm"
where
"lookupd x a [] = Ax x a"
| "lookupd x a ((c,y,P)#θ_c) = (if a=c then P[y⊢n>x] else lookupd x a θ_c)"
lemma lookupd_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(lookupd x a θ_n)) = lookupd (pi1∙x) (pi1∙a) (pi1∙θ_n)"
and "(pi2∙(lookupd x a θ_n)) = lookupd (pi2∙x) (pi2∙a) (pi2∙θ_n)"
apply -
apply(induct θ_n)
apply(auto simp add: eqvts)
apply(induct θ_n)
apply(auto simp add: eqvts)
done
lemma lookupa_fresh:
assumes a: "a♯θ_c"
shows "lookupa y a θ_c = Ax y a"
using a
apply(induct θ_c)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookupa_csubst:
assumes a: "a♯θ_c"
shows "Cut <a>.Ax y a (x).P = (lookupa y a θ_c){a:=(x).P}"
using a by (simp add: lookupa_fresh)
lemma lookupa_freshness:
fixes a::"coname"
and x::"name"
shows "a♯(θ_c,c) ⟹ a♯lookupa y c θ_c"
and "x♯(θ_c,y) ⟹ x♯lookupa y c θ_c"
apply(induct θ_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
done
lemma lookupa_unicity:
assumes a: "lookupa x a θ_c= Ax y b" "b♯θ_c" "y♯θ_c"
shows "x=y ∧ a=b"
using a
apply(induct θ_c)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "a=aa")
apply(auto)
apply(case_tac "a=aa")
apply(auto)
done
lemma lookupb_csubst:
assumes a: "a♯(θ_c,c,N)"
shows "Cut <c>.N (x).P = (lookupb y a θ_c c N){a:=(x).P}"
using a
apply(induct θ_c)
apply(auto simp add: fresh_list_cons fresh_atm fresh_prod)
apply(rule sym)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(subgoal_tac "Cut <c>.N (y).Ax y a = Cut <caa>.([(caa,c)]∙N) (ca).Ax ca a")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(simp)
apply(subgoal_tac "a♯([(caa,c)]∙N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha fresh_prod fresh_atm)
apply(simp add: alpha calc_atm fresh_prod fresh_atm)
done
lemma lookupb_freshness:
fixes a::"coname"
and x::"name"
shows "a♯(θ_c,c,b,P) ⟹ a♯lookupb y c θ_c b P"
and "x♯(θ_c,y,P) ⟹ x♯lookupb y c θ_c b P"
apply(induct θ_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
done
lemma lookupb_unicity:
assumes a: "lookupb x a θ_c c P = Ax y b" "b♯(θ_c,c,P)" "y♯θ_c"
shows "x=y ∧ a=b"
using a
apply(induct θ_c)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(case_tac "a=aa")
apply(auto)
apply(case_tac "a=aa")
apply(auto)
done
lemma lookupb_lookupa:
assumes a: "x♯θ_c"
shows "lookupb x c θ_c a P = (lookupa x c θ_c){x:=<a>.P}"
using a
apply(induct θ_c)
apply(auto simp add: fresh_list_cons fresh_prod)
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <c>.Ax x c (aa).b = Cut <ca>.Ax x ca (caa).([(caa,aa)]∙b)")
apply(simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp)
apply(simp)
apply(subgoal_tac "x♯([(caa,aa)]∙b)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule conjI)
apply(simp add: alpha calc_atm fresh_atm fresh_prod)
apply(rule sym)
apply(simp add: alpha calc_atm fresh_atm fresh_prod)
done
lemma lookup_csubst:
assumes a: "a♯(θ_n,θ_c)"
shows "lookup y c θ_n ((a,x,P)#θ_c) = (lookup y c θ_n θ_c){a:=(x).P}"
using a
apply(induct θ_n)
apply(auto simp add: fresh_prod fresh_list_cons)
apply(simp add: lookupa_csubst)
apply(simp add: lookupa_freshness forget fresh_atm fresh_prod)
apply(rule lookupb_csubst)
apply(simp)
apply(auto simp add: lookupb_freshness forget fresh_atm fresh_prod)
done
lemma lookup_fresh:
assumes a: "x♯(θ_n,θ_c)"
shows "lookup x c θ_n θ_c = lookupa x c θ_c"
using a
apply(induct θ_n)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookup_unicity:
assumes a: "lookup x a θ_n θ_c= Ax y b" "b♯(θ_c,θ_n)" "y♯(θ_c,θ_n)"
shows "x=y ∧ a=b"
using a
apply(induct θ_n)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod fresh_atm)
apply(drule lookupa_unicity)
apply(simp)+
apply(drule lookupa_unicity)
apply(simp)+
apply(case_tac "x=aa")
apply(auto)
apply(drule lookupb_unicity)
apply(simp add: fresh_atm)
apply(simp)
apply(simp)
apply(case_tac "x=aa")
apply(auto)
apply(drule lookupb_unicity)
apply(simp add: fresh_atm)
apply(simp)
apply(simp)
done
lemma lookup_freshness:
fixes a::"coname"
and x::"name"
shows "a♯(c,θ_c,θ_n) ⟹ a♯lookup y c θ_n θ_c"
and "x♯(y,θ_c,θ_n) ⟹ x♯lookup y c θ_n θ_c"
apply(induct θ_n)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
apply(simp add: fresh_atm fresh_prod lookupa_freshness)
apply(simp add: fresh_atm fresh_prod lookupa_freshness)
apply(simp add: fresh_atm fresh_prod lookupb_freshness)
apply(simp add: fresh_atm fresh_prod lookupb_freshness)
done
lemma lookupc_freshness:
fixes a::"coname"
and x::"name"
shows "a♯(θ_c,c) ⟹ a♯lookupc y c θ_c"
and "x♯(θ_c,y) ⟹ x♯lookupc y c θ_c"
apply(induct θ_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
done
lemma lookupc_fresh:
assumes a: "y♯θ_n"
shows "lookupc y a θ_n = Ax y a"
using a
apply(induct θ_n)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookupc_nmaps:
assumes a: "θ_n nmaps x to Some (c,P)"
shows "lookupc x a θ_n = P[c⊢c>a]"
using a
apply(induct θ_n)
apply(auto)
done
lemma lookupc_unicity:
assumes a: "lookupc y a θ_n = Ax x b" "x♯θ_n"
shows "y=x"
using a
apply(induct θ_n)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
apply(case_tac "y=aa")
apply(auto)
apply(subgoal_tac "x♯(ba[aa⊢c>a])")
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp)
done
lemma lookupd_fresh:
assumes a: "a♯θ_c"
shows "lookupd y a θ_c = Ax y a"
using a
apply(induct θ_c)
apply(auto simp add: fresh_prod fresh_list_cons fresh_atm)
done
lemma lookupd_unicity:
assumes a: "lookupd y a θ_c = Ax y b" "b♯θ_c"
shows "a=b"
using a
apply(induct θ_c)
apply(auto simp add: trm.inject fresh_list_cons fresh_prod)
apply(case_tac "a=aa")
apply(auto)
apply(subgoal_tac "b♯(ba[aa⊢n>y])")
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp)
done
lemma lookupd_freshness:
fixes a::"coname"
and x::"name"
shows "a♯(θ_c,c) ⟹ a♯lookupd y c θ_c"
and "x♯(θ_c,y) ⟹ x♯lookupd y c θ_c"
apply(induct θ_c)
apply(auto simp add: fresh_prod fresh_list_cons abs_fresh fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
apply(rule rename_fresh)
apply(simp add: fresh_atm)
done
lemma lookupd_cmaps:
assumes a: "θ_c cmaps a to Some (x,P)"
shows "lookupd y a θ_c = P[x⊢n>y]"
using a
apply(induct θ_c)
apply(auto)
done
nominal_primrec (freshness_context: "θ_n::(name×coname×trm)")
stn :: "trm⇒(name×coname×trm) list⇒trm"
where
"stn (Ax x a) θ_n = lookupc x a θ_n"
| "⟦a♯(N,θ_n);x♯(M,θ_n)⟧ ⟹ stn (Cut <a>.M (x).N) θ_n = (Cut <a>.M (x).N)"
| "x♯θ_n ⟹ stn (NotR (x).M a) θ_n = (NotR (x).M a)"
| "a♯θ_n ⟹stn (NotL <a>.M x) θ_n = (NotL <a>.M x)"
| "⟦a♯(N,d,b,θ_n);b♯(M,d,a,θ_n)⟧ ⟹ stn (AndR <a>.M <b>.N d) θ_n = (AndR <a>.M <b>.N d)"
| "x♯(z,θ_n) ⟹ stn (AndL1 (x).M z) θ_n = (AndL1 (x).M z)"
| "x♯(z,θ_n) ⟹ stn (AndL2 (x).M z) θ_n = (AndL2 (x).M z)"
| "a♯(b,θ_n) ⟹ stn (OrR1 <a>.M b) θ_n = (OrR1 <a>.M b)"
| "a♯(b,θ_n) ⟹ stn (OrR2 <a>.M b) θ_n = (OrR2 <a>.M b)"
| "⟦x♯(N,z,u,θ_n);u♯(M,z,x,θ_n)⟧ ⟹ stn (OrL (x).M (u).N z) θ_n = (OrL (x).M (u).N z)"
| "⟦a♯(b,θ_n);x♯θ_n⟧ ⟹ stn (ImpR (x).<a>.M b) θ_n = (ImpR (x).<a>.M b)"
| "⟦a♯(N,θ_n);x♯(M,z,θ_n)⟧ ⟹ stn (ImpL <a>.M (x).N z) θ_n = (ImpL <a>.M (x).N z)"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh abs_supp fin_supp)+
apply(fresh_guess)+
done
nominal_primrec (freshness_context: "θ_c::(coname×name×trm)")
stc :: "trm⇒(coname×name×trm) list⇒trm"
where
"stc (Ax x a) θ_c = lookupd x a θ_c"
| "⟦a♯(N,θ_c);x♯(M,θ_c)⟧ ⟹ stc (Cut <a>.M (x).N) θ_c = (Cut <a>.M (x).N)"
| "x♯θ_c ⟹ stc (NotR (x).M a) θ_c = (NotR (x).M a)"
| "a♯θ_c ⟹ stc (NotL <a>.M x) θ_c = (NotL <a>.M x)"
| "⟦a♯(N,d,b,θ_c);b♯(M,d,a,θ_c)⟧ ⟹ stc (AndR <a>.M <b>.N d) θ_c = (AndR <a>.M <b>.N d)"
| "x♯(z,θ_c) ⟹ stc (AndL1 (x).M z) θ_c = (AndL1 (x).M z)"
| "x♯(z,θ_c) ⟹ stc (AndL2 (x).M z) θ_c = (AndL2 (x).M z)"
| "a♯(b,θ_c) ⟹ stc (OrR1 <a>.M b) θ_c = (OrR1 <a>.M b)"
| "a♯(b,θ_c) ⟹ stc (OrR2 <a>.M b) θ_c = (OrR2 <a>.M b)"
| "⟦x♯(N,z,u,θ_c);u♯(M,z,x,θ_c)⟧ ⟹ stc (OrL (x).M (u).N z) θ_c = (OrL (x).M (u).N z)"
| "⟦a♯(b,θ_c);x♯θ_c⟧ ⟹ stc (ImpR (x).<a>.M b) θ_c = (ImpR (x).<a>.M b)"
| "⟦a♯(N,θ_c);x♯(M,z,θ_c)⟧ ⟹ stc (ImpL <a>.M (x).N z) θ_c = (ImpL <a>.M (x).N z)"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh abs_supp fin_supp)+
apply(fresh_guess)+
done
lemma stn_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(stn M θ_n)) = stn (pi1∙M) (pi1∙θ_n)"
and "(pi2∙(stn M θ_n)) = stn (pi2∙M) (pi2∙θ_n)"
apply -
apply(nominal_induct M avoiding: θ_n rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
apply(nominal_induct M avoiding: θ_n rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
done
lemma stc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(stc M θ_c)) = stc (pi1∙M) (pi1∙θ_c)"
and "(pi2∙(stc M θ_c)) = stc (pi2∙M) (pi2∙θ_c)"
apply -
apply(nominal_induct M avoiding: θ_c rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
apply(nominal_induct M avoiding: θ_c rule: trm.strong_induct)
apply(auto simp add: eqvts fresh_bij fresh_prod eq_bij fresh_atm)
done
lemma stn_fresh:
fixes a::"coname"
and x::"name"
shows "a♯(θ_n,M) ⟹ a♯stn M θ_n"
and "x♯(θ_n,M) ⟹ x♯stn M θ_n"
apply(nominal_induct M avoiding: θ_n a x rule: trm.strong_induct)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
done
lemma stc_fresh:
fixes a::"coname"
and x::"name"
shows "a♯(θ_c,M) ⟹ a♯stc M θ_c"
and "x♯(θ_c,M) ⟹ x♯stc M θ_c"
apply(nominal_induct M avoiding: θ_c a x rule: trm.strong_induct)
apply(auto simp add: abs_fresh fresh_prod fresh_atm)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
done
lemma case_option_eqvt1[eqvt_force]:
fixes pi1::"name prm"
and pi2::"coname prm"
and B::"(name×trm) option"
and r::"trm"
shows "(pi1∙(case B of Some (x,P) ⇒ s x P | None ⇒ r)) =
(case (pi1∙B) of Some (x,P) ⇒ (pi1∙s) x P | None ⇒ (pi1∙r))"
and "(pi2∙(case B of Some (x,P) ⇒ s x P| None ⇒ r)) =
(case (pi2∙B) of Some (x,P) ⇒ (pi2∙s) x P | None ⇒ (pi2∙r))"
apply(cases "B")
apply(auto)
apply(perm_simp)
apply(cases "B")
apply(auto)
apply(perm_simp)
done
lemma case_option_eqvt2[eqvt_force]:
fixes pi1::"name prm"
and pi2::"coname prm"
and B::"(coname×trm) option"
and r::"trm"
shows "(pi1∙(case B of Some (x,P) ⇒ s x P | None ⇒ r)) =
(case (pi1∙B) of Some (x,P) ⇒ (pi1∙s) x P | None ⇒ (pi1∙r))"
and "(pi2∙(case B of Some (x,P) ⇒ s x P| None ⇒ r)) =
(case (pi2∙B) of Some (x,P) ⇒ (pi2∙s) x P | None ⇒ (pi2∙r))"
apply(cases "B")
apply(auto)
apply(perm_simp)
apply(cases "B")
apply(auto)
apply(perm_simp)
done
nominal_primrec (freshness_context: "(θ_n::(name×coname×trm) list,θ_c::(coname×name×trm) list)")
psubst :: "(name×coname×trm) list⇒(coname×name×trm) list⇒trm⇒trm" ("_,_<_>" [100,100,100] 100)
where
"θ_n,θ_c<Ax x a> = lookup x a θ_n θ_c"
| "⟦a♯(N,θ_n,θ_c);x♯(M,θ_n,θ_c)⟧ ⟹ θ_n,θ_c<Cut <a>.M (x).N> =
Cut <a>.(if ∃x. M=Ax x a then stn M θ_n else θ_n,θ_c<M>)
(x).(if ∃a. N=Ax x a then stc N θ_c else θ_n,θ_c<N>)"
| "x♯(θ_n,θ_c) ⟹ θ_n,θ_c<NotR (x).M a> =
(case (findc θ_c a) of
Some (u,P) ⇒ fresh_fun (λa'. Cut <a'>.NotR (x).(θ_n,θ_c<M>) a' (u).P)
| None ⇒ NotR (x).(θ_n,θ_c<M>) a)"
| "a♯(θ_n,θ_c) ⟹ θ_n,θ_c<NotL <a>.M x> =
(case (findn θ_n x) of
Some (c,P) ⇒ fresh_fun (λx'. Cut <c>.P (x').(NotL <a>.(θ_n,θ_c<M>) x'))
| None ⇒ NotL <a>.(θ_n,θ_c<M>) x)"
| "⟦a♯(N,c,θ_n,θ_c);b♯(M,c,θ_n,θ_c);b≠a⟧ ⟹ (θ_n,θ_c<AndR <a>.M <b>.N c>) =
(case (findc θ_c c) of
Some (x,P) ⇒ fresh_fun (λa'. Cut <a'>.(AndR <a>.(θ_n,θ_c<M>) <b>.(θ_n,θ_c<N>) a') (x).P)
| None ⇒ AndR <a>.(θ_n,θ_c<M>) <b>.(θ_n,θ_c<N>) c)"
| "x♯(z,θ_n,θ_c) ⟹ (θ_n,θ_c<AndL1 (x).M z>) =
(case (findn θ_n z) of
Some (c,P) ⇒ fresh_fun (λz'. Cut <c>.P (z').AndL1 (x).(θ_n,θ_c<M>) z')
| None ⇒ AndL1 (x).(θ_n,θ_c<M>) z)"
| "x♯(z,θ_n,θ_c) ⟹ (θ_n,θ_c<AndL2 (x).M z>) =
(case (findn θ_n z) of
Some (c,P) ⇒ fresh_fun (λz'. Cut <c>.P (z').AndL2 (x).(θ_n,θ_c<M>) z')
| None ⇒ AndL2 (x).(θ_n,θ_c<M>) z)"
| "⟦x♯(N,z,θ_n,θ_c);u♯(M,z,θ_n,θ_c);x≠u⟧ ⟹ (θ_n,θ_c<OrL (x).M (u).N z>) =
(case (findn θ_n z) of
Some (c,P) ⇒ fresh_fun (λz'. Cut <c>.P (z').OrL (x).(θ_n,θ_c<M>) (u).(θ_n,θ_c<N>) z')
| None ⇒ OrL (x).(θ_n,θ_c<M>) (u).(θ_n,θ_c<N>) z)"
| "a♯(b,θ_n,θ_c) ⟹ (θ_n,θ_c<OrR1 <a>.M b>) =
(case (findc θ_c b) of
Some (x,P) ⇒ fresh_fun (λa'. Cut <a'>.OrR1 <a>.(θ_n,θ_c<M>) a' (x).P)
| None ⇒ OrR1 <a>.(θ_n,θ_c<M>) b)"
| "a♯(b,θ_n,θ_c) ⟹ (θ_n,θ_c<OrR2 <a>.M b>) =
(case (findc θ_c b) of
Some (x,P) ⇒ fresh_fun (λa'. Cut <a'>.OrR2 <a>.(θ_n,θ_c<M>) a' (x).P)
| None ⇒ OrR2 <a>.(θ_n,θ_c<M>) b)"
| "⟦a♯(b,θ_n,θ_c); x♯(θ_n,θ_c)⟧ ⟹ (θ_n,θ_c<ImpR (x).<a>.M b>) =
(case (findc θ_c b) of
Some (z,P) ⇒ fresh_fun (λa'. Cut <a'>.ImpR (x).<a>.(θ_n,θ_c<M>) a' (z).P)
| None ⇒ ImpR (x).<a>.(θ_n,θ_c<M>) b)"
| "⟦a♯(N,θ_n,θ_c); x♯(z,M,θ_n,θ_c)⟧ ⟹ (θ_n,θ_c<ImpL <a>.M (x).N z>) =
(case (findn θ_n z) of
Some (c,P) ⇒ fresh_fun (λz'. Cut <c>.P (z').ImpL <a>.(θ_n,θ_c<M>) (x).(θ_n,θ_c<N>) z')
| None ⇒ ImpL <a>.(θ_n,θ_c<M>) (x).(θ_n,θ_c<N>) z)"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh stc_fresh)
apply(simp add: abs_fresh stn_fresh)
apply(case_tac "findc θ_c x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn θ_n x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc θ_c x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc θ_c x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule_tac x="x3" in cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn θ_n x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn θ_n x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc θ_c x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc θ_c x3")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn θ_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn θ_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule_tac a="x3" in nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findc θ_c x4")
apply(simp add: abs_fresh abs_supp fin_supp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
apply(case_tac "findc θ_c x4")
apply(simp add: abs_fresh abs_supp fin_supp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp (no_asm))
apply(drule_tac x="x2" in cmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm abs_supp fin_supp)
apply(case_tac "findn θ_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(case_tac "findn θ_n x5")
apply(simp add: abs_fresh)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp (no_asm))
apply(drule_tac a="x3" in nmaps_fresh)
apply(auto simp add: fresh_prod)[1]
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(fresh_guess)+
done
lemma case_cong:
assumes a: "B1=B2" "x1=x2" "y1=y2"
shows "(case B1 of None ⇒ x1 | Some (x,P) ⇒ y1 x P) = (case B2 of None ⇒ x2 | Some (x,P) ⇒ y2 x P)"
using a
apply(auto)
done
lemma find_maps:
shows "θ_c cmaps a to (findc θ_c a)"
and "θ_n nmaps x to (findn θ_n x)"
apply(auto)
done
lemma psubst_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "pi1∙(θ_n,θ_c<M>) = (pi1∙θ_n),(pi1∙θ_c)<(pi1∙M)>"
and "pi2∙(θ_n,θ_c<M>) = (pi2∙θ_n),(pi2∙θ_c)<(pi2∙M)>"
apply(nominal_induct M avoiding: θ_n θ_c rule: trm.strong_induct)
apply(auto simp add: eq_bij fresh_bij eqvts perm_pi_simp)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
apply(rule case_cong)
apply(rule find_maps)
apply(simp)
apply(perm_simp add: eqvts)
done
lemma ax_psubst:
assumes a: "θ_n,θ_c<M> = Ax x a"
and b: "a♯(θ_n,θ_c)" "x♯(θ_n,θ_c)"
shows "M = Ax x a"
using a b
apply(nominal_induct M avoiding: θ_n θ_c rule: trm.strong_induct)
apply(auto)
apply(drule lookup_unicity)
apply(simp)+
apply(case_tac "findc θ_c coname")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn θ_n name")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc θ_c coname3")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn θ_n name3")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp)
done
lemma better_Cut_substc1:
assumes a: "a♯(P,b)" "b♯N"
shows "(Cut <a>.M (x).N){b:=(y).P} = Cut <a>.(M{b:=(y).P}) (x).N"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]∙M) (ca).([(ca,x)]∙N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm fresh_atm)
apply(subgoal_tac"b♯([(ca,x)]∙N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(simp add: fresh_left calc_atm)
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma better_Cut_substc2:
assumes a: "x♯(y,P)" "b♯(a,M)" "N≠Ax x b"
shows "(Cut <a>.M (x).N){b:=(y).P} = Cut <a>.M (x).(N{b:=(y).P})"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]∙M) (ca).([(ca,x)]∙N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm fresh_atm fresh_prod)
apply(subgoal_tac"b♯([(c,a)]∙M)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma better_Cut_substn1:
assumes a: "y♯(x,N)" "a♯(b,P)" "M≠Ax y a"
shows "(Cut <a>.M (x).N){y:=<b>.P} = Cut <a>.(M{y:=<b>.P}) (x).N"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]∙M) (ca).([(ca,x)]∙N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm fresh_atm fresh_prod)
apply(subgoal_tac"y♯([(ca,x)]∙N)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma better_Cut_substn2:
assumes a: "x♯(P,y)" "y♯M"
shows "(Cut <a>.M (x).N){y:=<b>.P} = Cut <a>.M (x).(N{y:=<b>.P})"
using a
apply -
apply(generate_fresh "coname")
apply(generate_fresh "name")
apply(subgoal_tac "Cut <a>.M (x).N = Cut <c>.([(c,a)]∙M) (ca).([(ca,x)]∙N)")
apply(simp)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(auto)[1]
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm fresh_atm)
apply(subgoal_tac"y♯([(c,a)]∙M)")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(perm_simp)
apply(simp add: fresh_left calc_atm)
apply(simp add: trm.inject)
apply(rule conjI)
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
apply(rule sym)
apply(simp add: alpha eqvts calc_atm fresh_prod fresh_atm subst_fresh)[1]
done
lemma psubst_fresh_name:
fixes x::"name"
assumes a: "x♯θ_n" "x♯θ_c" "x♯M"
shows "x♯θ_n,θ_c<M>"
using a
apply(nominal_induct M avoiding: x θ_n θ_c rule: trm.strong_induct)
apply(simp add: lookup_freshness)
apply(auto simp add: abs_fresh)[1]
apply(simp add: lookupc_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupc_freshness)
apply(simp)
apply(case_tac "findc θ_c coname")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
done
lemma psubst_fresh_coname:
fixes a::"coname"
assumes a: "a♯θ_n" "a♯θ_c" "a♯M"
shows "a♯θ_n,θ_c<M>"
using a
apply(nominal_induct M avoiding: a θ_n θ_c rule: trm.strong_induct)
apply(simp add: lookup_freshness)
apply(auto simp add: abs_fresh)[1]
apply(simp add: lookupd_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupd_freshness)
apply(simp add: lookupc_freshness)
apply(simp add: lookupd_freshness)
apply(simp)
apply(case_tac "findc θ_c coname")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name3")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(auto simp add: abs_fresh abs_supp fin_supp)[1]
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(simp add: abs_fresh abs_supp fin_supp fresh_prod fresh_atm cmaps_fresh)
apply(simp)
apply(case_tac "findn θ_n name2")
apply(auto simp add: abs_fresh)[1]
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(simp add: abs_fresh fresh_prod fresh_atm nmaps_fresh)
done
lemma psubst_csubst:
assumes a: "a♯(θ_n,θ_c)"
shows "θ_n,((a,x,P)#θ_c)<M> = ((θ_n,θ_c<M>){a:=(x).P})"
using a
apply(nominal_induct M avoiding: a x θ_n θ_c P rule: trm.strong_induct)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp add: lookup_csubst)
apply(simp add: fresh_list_cons fresh_prod)
apply(auto)[1]
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp add: lookupd_fresh)
apply(subgoal_tac "a♯lookupc xa coname θ_n")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha nrename_swap fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupd_unicity)
apply(rule impI)
apply(subgoal_tac "a♯lookupc xa coname θ_n")
apply(subgoal_tac "a♯lookupd name aa θ_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(blast)
apply(rule impI)
apply(subgoal_tac "a♯lookupc xa coname θ_n")
apply(simp add: forget)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha)
apply(simp add: alpha nrename_swap fresh_atm)
apply(simp add: lookupd_fresh)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupd_unicity)
apply(rule impI)
apply(subgoal_tac "a♯lookupd name aa θ_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(blast)
apply(simp)
apply(case_tac "findc θ_c coname")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(case_tac "findc θ_c coname3")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name3")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_name fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule cmaps_false)
apply(assumption)
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc1)
apply(simp)
apply(simp add: cmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: abs_fresh subst_fresh)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substc2)
apply(simp)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
done
lemma psubst_nsubst:
assumes a: "x♯(θ_n,θ_c)"
shows "((x,a,P)#θ_n),θ_c<M> = ((θ_n,θ_c<M>){x:=<a>.P})"
using a
apply(nominal_induct M avoiding: a x θ_n θ_c P rule: trm.strong_induct)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp add: lookup_fresh)
apply(rule lookupb_lookupa)
apply(simp)
apply(rule sym)
apply(rule forget)
apply(rule lookup_freshness)
apply(simp add: fresh_atm)
apply(auto simp add: lookupc_freshness fresh_list_cons fresh_prod)[1]
apply(simp add: lookupc_fresh)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp add: lookupd_fresh)
apply(subgoal_tac "x♯lookupd name aa θ_c")
apply(simp add: forget)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha crename_swap fresh_atm)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupc_unicity)
apply(rule impI)
apply(subgoal_tac "x♯lookupc xa coname θ_n")
apply(subgoal_tac "x♯lookupd name aa θ_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule lookupc_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: trm.inject)
apply(rule sym)
apply(simp add: alpha crename_swap fresh_atm)
apply(rule impI)
apply(simp add: lookupc_fresh)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(simp add: lookupc_unicity)
apply(rule impI)
apply(subgoal_tac "x♯lookupc xa coname θ_n")
apply(simp add: forget)
apply(rule lookupc_freshness)
apply(simp add: fresh_prod fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(simp)
apply(blast)
apply(rule impI)
apply(subgoal_tac "x♯lookupd name aa θ_c")
apply(simp add: forget)
apply(rule lookupd_freshness)
apply(simp add: fresh_atm)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(simp)
apply(rule impI)
apply(drule ax_psubst)
apply(simp)
apply(simp)
apply(blast)
apply(simp)
apply(case_tac "findc θ_c coname")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(case_tac "findn θ_n name")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(case_tac "findc θ_c coname3")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name3")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_name fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findc θ_c coname2")
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_list_cons fresh_prod fresh_atm)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn1)
apply(simp add: cmaps_fresh)
apply(simp)
apply(simp)
apply(auto simp add: psubst_fresh_coname fresh_prod fresh_atm)[1]
apply(simp)
apply(case_tac "findn θ_n name2")
apply(simp)
apply(auto simp add: fresh_list_cons psubst_fresh_coname psubst_fresh_name fresh_atm fresh_prod)[1]
apply(simp)
apply(auto simp add: fresh_list_cons fresh_prod)[1]
apply(drule nmaps_false)
apply(simp)
apply(simp)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(rule sym)
apply(rule trans)
apply(rule better_Cut_substn2)
apply(simp)
apply(simp add: nmaps_fresh)
apply(auto simp add: psubst_fresh_coname psubst_fresh_name fresh_prod fresh_atm)[1]
done
definition
ncloses :: "(name×coname×trm) list⇒(name×ty) list ⇒ bool" ("_ ncloses _" [55,55] 55)
where
"θ_n ncloses Γ ≡ ∀x B. ((x,B) ∈ set Γ ⟶ (∃c P. θ_n nmaps x to Some (c,P) ∧ <c>:P ∈ (∥<B>∥)))"
definition
ccloses :: "(coname×name×trm) list⇒(coname×ty) list ⇒ bool" ("_ ccloses _" [55,55] 55)
where
"θ_c ccloses Δ ≡ ∀a B. ((a,B) ∈ set Δ ⟶ (∃x P. θ_c cmaps a to Some (x,P) ∧ (x):P ∈ (∥(B)∥)))"
lemma ncloses_elim:
assumes a: "(x,B) ∈ set Γ"
and b: "θ_n ncloses Γ"
shows "∃c P. θ_n nmaps x to Some (c,P) ∧ <c>:P ∈ (∥<B>∥)"
using a b by (auto simp add: ncloses_def)
lemma ccloses_elim:
assumes a: "(a,B) ∈ set Δ"
and b: "θ_c ccloses Δ"
shows "∃x P. θ_c cmaps a to Some (x,P) ∧ (x):P ∈ (∥(B)∥)"
using a b by (auto simp add: ccloses_def)
lemma ncloses_subset:
assumes a: "θ_n ncloses Γ"
and b: "set Γ' ⊆ set Γ"
shows "θ_n ncloses Γ'"
using a b by (auto simp add: ncloses_def)
lemma ccloses_subset:
assumes a: "θ_c ccloses Δ"
and b: "set Δ' ⊆ set Δ"
shows "θ_c ccloses Δ'"
using a b by (auto simp add: ccloses_def)
lemma validc_fresh:
fixes a::"coname"
and Δ::"(coname×ty) list"
assumes a: "a♯Δ"
shows "¬(∃B. (a,B)∈set Δ)"
using a
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma validn_fresh:
fixes x::"name"
and Γ::"(name×ty) list"
assumes a: "x♯Γ"
shows "¬(∃B. (x,B)∈set Γ)"
using a
apply(induct Γ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma ccloses_extend:
assumes a: "θ_c ccloses Δ" "a♯Δ" "a♯θ_c" "(x):P∈∥(B)∥"
shows "(a,x,P)#θ_c ccloses (a,B)#Δ"
using a
apply(simp add: ccloses_def)
apply(drule validc_fresh)
apply(auto)
done
lemma ncloses_extend:
assumes a: "θ_n ncloses Γ" "x♯Γ" "x♯θ_n" "<a>:P∈∥<B>∥"
shows "(x,a,P)#θ_n ncloses (x,B)#Γ"
using a
apply(simp add: ncloses_def)
apply(drule validn_fresh)
apply(auto)
done
text ‹typing relation›
inductive
typing :: "ctxtn ⇒ trm ⇒ ctxtc ⇒ bool" ("_ ⊢ _ ⊢ _" [100,100,100] 100)
where
TAx: "⟦validn Γ;validc Δ; (x,B)∈set Γ; (a,B)∈set Δ⟧ ⟹ Γ ⊢ Ax x a ⊢ Δ"
| TNotR: "⟦x♯Γ; ((x,B)#Γ) ⊢ M ⊢ Δ; set Δ' = {(a,NOT B)}∪set Δ; validc Δ'⟧
⟹ Γ ⊢ NotR (x).M a ⊢ Δ'"
| TNotL: "⟦a♯Δ; Γ ⊢ M ⊢ ((a,B)#Δ); set Γ' = {(x,NOT B)} ∪ set Γ; validn Γ'⟧
⟹ Γ' ⊢ NotL <a>.M x ⊢ Δ"
| TAndL1: "⟦x♯(Γ,y); ((x,B1)#Γ) ⊢ M ⊢ Δ; set Γ' = {(y,B1 AND B2)} ∪ set Γ; validn Γ'⟧
⟹ Γ' ⊢ AndL1 (x).M y ⊢ Δ"
| TAndL2: "⟦x♯(Γ,y); ((x,B2)#Γ) ⊢ M ⊢ Δ; set Γ' = {(y,B1 AND B2)} ∪ set Γ; validn Γ'⟧
⟹ Γ' ⊢ AndL2 (x).M y ⊢ Δ"
| TAndR: "⟦a♯(Δ,N,c); b♯(Δ,M,c); a≠b; Γ ⊢ M ⊢ ((a,B)#Δ); Γ ⊢ N ⊢ ((b,C)#Δ);
set Δ' = {(c,B AND C)}∪set Δ; validc Δ'⟧
⟹ Γ ⊢ AndR <a>.M <b>.N c ⊢ Δ'"
| TOrL: "⟦x♯(Γ,N,z); y♯(Γ,M,z); x≠y; ((x,B)#Γ) ⊢ M ⊢ Δ; ((y,C)#Γ) ⊢ N ⊢ Δ;
set Γ' = {(z,B OR C)} ∪ set Γ; validn Γ'⟧
⟹ Γ' ⊢ OrL (x).M (y).N z ⊢ Δ"
| TOrR1: "⟦a♯(Δ,b); Γ ⊢ M ⊢ ((a,B1)#Δ); set Δ' = {(b,B1 OR B2)}∪set Δ; validc Δ'⟧
⟹ Γ ⊢ OrR1 <a>.M b ⊢ Δ'"
| TOrR2: "⟦a♯(Δ,b); Γ ⊢ M ⊢ ((a,B2)#Δ); set Δ' = {(b,B1 OR B2)}∪set Δ; validc Δ'⟧
⟹ Γ ⊢ OrR2 <a>.M b ⊢ Δ'"
| TImpL: "⟦a♯(Δ,N); x♯(Γ,M,y); Γ ⊢ M ⊢ ((a,B)#Δ); ((x,C)#Γ) ⊢ N ⊢ Δ;
set Γ' = {(y,B IMP C)} ∪ set Γ; validn Γ'⟧
⟹ Γ' ⊢ ImpL <a>.M (x).N y ⊢ Δ"
| TImpR: "⟦a♯(Δ,b); x♯Γ; ((x,B)#Γ) ⊢ M ⊢ ((a,C)#Δ); set Δ' = {(b,B IMP C)}∪set Δ; validc Δ'⟧
⟹ Γ ⊢ ImpR (x).<a>.M b ⊢ Δ'"
| TCut: "⟦a♯(Δ,N); x♯(Γ,M); Γ ⊢ M ⊢ ((a,B)#Δ); ((x,B)#Γ) ⊢ N ⊢ Δ⟧
⟹ Γ ⊢ Cut <a>.M (x).N ⊢ Δ"
equivariance typing
lemma fresh_set_member:
fixes x::"name"
and a::"coname"
shows "x♯L ⟹ e∈set L ⟹ x♯e"
and "a♯L ⟹ e∈set L ⟹ a♯e"
by (induct L) (auto simp add: fresh_list_cons)
lemma fresh_subset:
fixes x::"name"
and a::"coname"
shows "x♯L ⟹ set L' ⊆ set L ⟹ x♯L'"
and "a♯L ⟹ set L' ⊆ set L ⟹ a♯L'"
apply(induct L' arbitrary: L)
apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
done
lemma fresh_subset_ext:
fixes x::"name"
and a::"coname"
shows "x♯L ⟹ x♯e ⟹ set L' ⊆ set (e#L) ⟹ x♯L'"
and "a♯L ⟹ a♯e ⟹ set L' ⊆ set (e#L) ⟹ a♯L'"
apply(induct L' arbitrary: L)
apply(auto simp add: fresh_list_cons fresh_list_nil intro: fresh_set_member)
done
lemma fresh_under_insert:
fixes x::"name"
and a::"coname"
and Γ::"ctxtn"
and Δ::"ctxtc"
shows "x♯Γ ⟹ x≠y ⟹ set Γ' = insert (y,B) (set Γ) ⟹ x♯Γ'"
and "a♯Δ ⟹ a≠c ⟹ set Δ' = insert (c,B) (set Δ) ⟹ a♯Δ'"
apply(rule fresh_subset_ext(1))
apply(auto simp add: fresh_prod fresh_atm fresh_ty)
apply(rule fresh_subset_ext(2))
apply(auto simp add: fresh_prod fresh_atm fresh_ty)
done
nominal_inductive typing
apply (simp_all add: abs_fresh fresh_atm fresh_list_cons fresh_prod fresh_ty fresh_ctxt
fresh_list_append abs_supp fin_supp)
apply(auto intro: fresh_under_insert)
done
lemma validn_elim:
assumes a: "validn ((x,B)#Γ)"
shows "validn Γ ∧ x♯Γ"
using a
apply(erule_tac validn.cases)
apply(auto)
done
lemma validc_elim:
assumes a: "validc ((a,B)#Δ)"
shows "validc Δ ∧ a♯Δ"
using a
apply(erule_tac validc.cases)
apply(auto)
done
lemma context_fresh:
fixes x::"name"
and a::"coname"
shows "x♯Γ ⟹ ¬(∃B. (x,B)∈set Γ)"
and "a♯Δ ⟹ ¬(∃B. (a,B)∈set Δ)"
apply -
apply(induct Γ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma typing_implies_valid:
assumes a: "Γ ⊢ M ⊢ Δ"
shows "validn Γ ∧ validc Δ"
using a
apply(nominal_induct rule: typing.strong_induct)
apply(auto dest: validn_elim validc_elim)
done
lemma ty_perm:
fixes pi1::"name prm"
and pi2::"coname prm"
and B::"ty"
shows "pi1∙B=B" and "pi2∙B=B"
apply(nominal_induct B rule: ty.strong_induct)
apply(auto simp add: perm_string)
done
lemma ctxt_perm:
fixes pi1::"name prm"
and pi2::"coname prm"
and Γ::"ctxtn"
and Δ::"ctxtc"
shows "pi2∙Γ=Γ" and "pi1∙Δ=Δ"
apply -
apply(induct Γ)
apply(auto simp add: calc_atm ty_perm)
apply(induct Δ)
apply(auto simp add: calc_atm ty_perm)
done
lemma typing_Ax_elim1:
assumes a: "Γ ⊢ Ax x a ⊢ ((a,B)#Δ)"
shows "(x,B)∈set Γ"
using a
apply(erule_tac typing.cases)
apply(simp_all add: trm.inject)
apply(auto)
apply(auto dest: validc_elim context_fresh)
done
lemma typing_Ax_elim2:
assumes a: "((x,B)#Γ) ⊢ Ax x a ⊢ Δ"
shows "(a,B)∈set Δ"
using a
apply(erule_tac typing.cases)
apply(simp_all add: trm.inject)
apply(auto dest!: validn_elim context_fresh)
done
lemma psubst_Ax_aux:
assumes a: "θ_c cmaps a to Some (y,N)"
shows "lookupb x a θ_c c P = Cut <c>.P (y).N"
using a
apply(induct θ_c)
apply(auto)
done
lemma psubst_Ax:
assumes a: "θ_n nmaps x to Some (c,P)"
and b: "θ_c cmaps a to Some (y,N)"
shows "θ_n,θ_c<Ax x a> = Cut <c>.P (y).N"
using a b
apply(induct θ_n)
apply(auto simp add: psubst_Ax_aux)
done
lemma psubst_Cut:
assumes a: "∀x. M≠Ax x c"
and b: "∀a. N≠Ax x a"
and c: "c♯(θ_n,θ_c,N)" "x♯(θ_n,θ_c,M)"
shows "θ_n,θ_c<Cut <c>.M (x).N> = Cut <c>.(θ_n,θ_c<M>) (x).(θ_n,θ_c<N>)"
using a b c
apply(simp)
done
lemma all_CAND:
assumes a: "Γ ⊢ M ⊢ Δ"
and b: "θ_n ncloses Γ"
and c: "θ_c ccloses Δ"
shows "SNa (θ_n,θ_c<M>)"
using a b c
proof(nominal_induct avoiding: θ_n θ_c rule: typing.strong_induct)
case (TAx Γ Δ x B a θ_n θ_c)
then show ?case
apply -
apply(drule ncloses_elim)
apply(assumption)
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)+
apply(rule_tac s="Cut <c>.P (xa).Pa" and t="θ_n,θ_c<Ax x a>" in subst)
apply(rule sym)
apply(simp only: psubst_Ax)
apply(simp add: CUT_SNa)
done
next
case (TNotR x Γ B M Δ Δ' a θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(a,NOT B) ∈ set Δ'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="NOT B" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="c" in exI)
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,aa,Pa)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TNotL a Δ Γ M B Γ' x θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(x,NOT B) ∈ set Γ'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="NOT B" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="a" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp (no_asm))
apply(rule_tac x="a" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TAndL1 x Γ y B1 M Δ Γ' B2 θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(y,B1 AND B2) ∈ set Γ'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B1 AND B2" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI1)
apply(rule_tac x="x" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp (no_asm))
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,a,Pa)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TAndL2 x Γ y B2 M Δ Γ' B1 θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(y,B1 AND B2) ∈ set Γ'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B1 AND B2" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp (no_asm))
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,a,Pa)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TAndR a Δ N c b M Γ B C Δ' θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(c,B AND C) ∈ set Δ'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B AND C" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="a" in exI)
apply(rule_tac x="b" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_csubst[symmetric])
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="b" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_csubst[symmetric])
apply(rotate_tac 14)
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(b,xa,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TOrL x Γ N z y M B Δ C Γ' θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(z,B OR C) ∈ set Γ'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B OR C" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="y" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(drule_tac x="(x,a,Pa)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="y" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(rotate_tac 14)
apply(drule_tac x="(y,a,Pa)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TOrR1 a Δ b Γ M B1 Δ' B2 θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(b,B1 OR B2) ∈ set Δ'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B1 OR B2" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI1)
apply(rule_tac x="a" in exI)
apply(rule_tac x="c" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp (no_asm))
apply(rule_tac x="a" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TOrR2 a Δ b Γ M B2 Δ' B1 θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(b,B1 OR B2) ∈ set Δ'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B1 OR B2" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="a" in exI)
apply(rule_tac x="c" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp (no_asm))
apply(rule_tac x="a" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp (no_asm))
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(simp)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TImpL a Δ N x Γ M y B C Γ' θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(y,B IMP C) ∈ set Γ'")
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp del: NEGc.simps)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(rule_tac B="B IMP C" in CUT_SNa)
apply(simp)
apply(rule NEG_intro)
apply(simp (no_asm))
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="a" in exI)
apply(rule_tac x="ca" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule conjI)
apply(rule fin.intros)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(simp del: NEGc.simps add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_name)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="a" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_csubst[symmetric])
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(a,xa,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(simp)
apply(simp)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp del: NEGc.simps)
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp del: NEGc.simps)
apply(rule allI)+
apply(rule impI)
apply(simp del: NEGc.simps add: psubst_nsubst[symmetric])
apply(rotate_tac 12)
apply(drule_tac x="(x,aa,Pa)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(rule ncloses_subset)
apply(assumption)
apply(blast)
apply(simp)
apply(simp)
apply(assumption)
apply(drule meta_mp)
apply(assumption)
apply(assumption)
apply(blast)
done
next
case (TImpR a Δ b x Γ B M C Δ' θ_n θ_c)
then show ?case
apply(simp)
apply(subgoal_tac "(b,B IMP C) ∈ set Δ'")
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(simp)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(rule_tac B="B IMP C" in CUT_SNa)
apply(simp)
apply(rule disjI2)
apply(rule disjI2)
apply(rule_tac x="x" in exI)
apply(rule_tac x="a" in exI)
apply(rule_tac x="c" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule conjI)
apply(rule fic.intros)
apply(simp add: abs_fresh fresh_prod fresh_atm)
apply(rule psubst_fresh_coname)
apply(simp)
apply(simp)
apply(simp)
apply(rule conjI)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_csubst[symmetric])
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,((a,z,Pa)#θ_c)<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(rule_tac t="θ_n,((a,z,Pa)#θ_c)<M>{x:=<aa>.Pb}" and
s="((x,aa,Pb)#θ_n),((a,z,Pa)#θ_c)<M>" in subst)
apply(rule psubst_nsubst)
apply(simp add: fresh_prod fresh_atm fresh_list_cons)
apply(drule_tac x="(x,aa,Pb)#θ_n" in meta_spec)
apply(drule_tac x="(a,z,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
apply(simp)
apply(simp)
apply(assumption)
apply(rule allI)+
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric])
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="((x,ca,Q)#θ_n),θ_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(rule_tac t="((x,ca,Q)#θ_n),θ_c<M>{a:=(xaa).Pa}" and
s="((x,ca,Q)#θ_n),((a,xaa,Pa)#θ_c)<M>" in subst)
apply(rule psubst_csubst)
apply(simp add: fresh_prod fresh_atm fresh_list_cons)
apply(drule_tac x="(x,ca,Q)#θ_n" in meta_spec)
apply(drule_tac x="(a,xaa,Pa)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(simp)
apply(simp)
apply(simp)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(rule ccloses_subset)
apply(assumption)
apply(blast)
apply(auto intro: fresh_subset simp del: NEGc.simps)[1]
apply(simp)
apply(simp)
apply(assumption)
apply(simp)
apply(blast)
done
next
case (TCut a Δ N x Γ M B θ_n θ_c)
then show ?case
apply -
apply(case_tac "∀y. M≠Ax y a")
apply(case_tac "∀c. N≠Ax x c")
apply(simp)
apply(rule_tac B="B" in CUT_SNa)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule allI)
apply(rule allI)
apply(rule impI)
apply(simp add: psubst_csubst[symmetric])
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(a,xa,P)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp)
apply(rule allI)
apply(rule allI)
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric])
apply(rotate_tac 11)
apply(drule_tac x="(x,aa,P)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(drule_tac meta_mp)
apply(assumption)
apply(assumption)
apply(simp (no_asm_use))
apply(erule exE)
apply(simp del: psubst.simps)
apply(drule typing_Ax_elim2)
apply(auto simp add: trm.inject)[1]
apply(rule_tac B="B" in CUT_SNa)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGc_def)
apply(simp)
apply(rule_tac x="a" in exI)
apply(rule_tac x="θ_n,θ_c<M>" in exI)
apply(simp)
apply(rule allI)+
apply(rule impI)
apply(drule_tac x="θ_n" in meta_spec)
apply(drule_tac x="(a,xa,P)#θ_c" in meta_spec)
apply(drule meta_mp)
apply(assumption)
apply(drule meta_mp)
apply(rule ccloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(simp add: psubst_csubst[symmetric])
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac y="x" in lookupd_cmaps)
apply(drule cmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "(x):P[xa⊢n>x] = (xa):P")
apply(simp)
apply(simp add: ntrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
apply(simp)
apply(auto)[1]
apply(rule_tac B="B" in CUT_SNa)
apply(drule typing_Ax_elim1)
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac a="a" in lookupc_nmaps)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "<a>:P[c⊢c>a] = <c>:P")
apply(simp)
apply(simp add: ctrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
apply(drule typing_Ax_elim2)
apply(drule ccloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac y="x" in lookupd_cmaps)
apply(drule cmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "(x):P[xa⊢n>x] = (xa):P")
apply(simp)
apply(simp add: ntrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
apply(rule_tac B="B" in CUT_SNa)
apply(drule typing_Ax_elim1)
apply(drule ncloses_elim)
apply(assumption)
apply(erule exE)+
apply(erule conjE)
apply(frule_tac a="a" in lookupc_nmaps)
apply(drule_tac a="a" in nmaps_fresh)
apply(assumption)
apply(simp)
apply(subgoal_tac "<a>:P[c⊢c>a] = <c>:P")
apply(simp)
apply(simp add: ctrm.inject)
apply(simp add: alpha fresh_prod fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
apply(rule BINDING_implies_CAND)
apply(unfold BINDINGn_def)
apply(simp)
apply(rule_tac x="x" in exI)
apply(rule_tac x="θ_n,θ_c<N>" in exI)
apply(simp)
apply(rule allI)
apply(rule allI)
apply(rule impI)
apply(simp add: psubst_nsubst[symmetric])
apply(rotate_tac 10)
apply(drule_tac x="(x,aa,P)#θ_n" in meta_spec)
apply(drule_tac x="θ_c" in meta_spec)
apply(drule meta_mp)
apply(rule ncloses_extend)
apply(assumption)
apply(assumption)
apply(assumption)
apply(assumption)
apply(drule_tac meta_mp)
apply(assumption)
apply(assumption)
done
qed
primrec "idn" :: "(name×ty) list⇒coname⇒(name×coname×trm) list" where
"idn [] a = []"
| "idn (p#Γ) a = ((fst p),a,Ax (fst p) a)#(idn Γ a)"
primrec "idc" :: "(coname×ty) list⇒name⇒(coname×name×trm) list" where
"idc [] x = []"
| "idc (p#Δ) x = ((fst p),x,Ax x (fst p))#(idc Δ x)"
lemma idn_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(idn Γ a)) = idn (pi1∙Γ) (pi1∙a)"
and "(pi2∙(idn Γ a)) = idn (pi2∙Γ) (pi2∙a)"
apply(induct Γ)
apply(auto)
done
lemma idc_eqvt[eqvt]:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "(pi1∙(idc Δ x)) = idc (pi1∙Δ) (pi1∙x)"
and "(pi2∙(idc Δ x)) = idc (pi2∙Δ) (pi2∙x)"
apply(induct Δ)
apply(auto)
done
lemma ccloses_id:
shows "(idc Δ x) ccloses Δ"
apply(induct Δ)
apply(auto simp add: ccloses_def)
apply(rule Ax_in_CANDs)
apply(rule Ax_in_CANDs)
done
lemma ncloses_id:
shows "(idn Γ a) ncloses Γ"
apply(induct Γ)
apply(auto simp add: ncloses_def)
apply(rule Ax_in_CANDs)
apply(rule Ax_in_CANDs)
done
lemma fresh_idn:
fixes x::"name"
and a::"coname"
shows "x♯Γ ⟹ x♯idn Γ a"
and "a♯(Γ,b) ⟹ a♯idn Γ b"
apply(induct Γ)
apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
done
lemma fresh_idc:
fixes x::"name"
and a::"coname"
shows "x♯(Δ,y) ⟹ x♯idc Δ y"
and "a♯Δ ⟹ a♯idc Δ y"
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_list_nil fresh_atm fresh_prod)
done
lemma idc_cmaps:
assumes a: "idc Δ y cmaps b to Some (x,M)"
shows "M=Ax x b"
using a
apply(induct Δ)
apply(auto)
apply(case_tac "b=a")
apply(auto)
done
lemma idn_nmaps:
assumes a: "idn Γ a nmaps x to Some (b,M)"
shows "M=Ax x b"
using a
apply(induct Γ)
apply(auto)
apply(case_tac "aa=x")
apply(auto)
done
lemma lookup1:
assumes a: "x♯(idn Γ b)"
shows "lookup x a (idn Γ b) θ_c = lookupa x a θ_c"
using a
apply(induct Γ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma lookup2:
assumes a: "¬(x♯(idn Γ b))"
shows "lookup x a (idn Γ b) θ_c = lookupb x a θ_c b (Ax x b)"
using a
apply(induct Γ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup3:
assumes a: "a♯(idc Δ y)"
shows "lookupa x a (idc Δ y) = Ax x a"
using a
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm)
done
lemma lookup4:
assumes a: "¬(a♯(idc Δ y))"
shows "lookupa x a (idc Δ y) = Cut <a>.(Ax x a) (y).Ax y a"
using a
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup5:
assumes a: "a♯(idc Δ y)"
shows "lookupb x a (idc Δ y) c P = Cut <c>.P (x).Ax x a"
using a
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup6:
assumes a: "¬(a♯(idc Δ y))"
shows "lookupb x a (idc Δ y) c P = Cut <c>.P (y).Ax y a"
using a
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup7:
shows "lookupc x a (idn Γ b) = Ax x a"
apply(induct Γ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma lookup8:
shows "lookupd x a (idc Δ y) = Ax x a"
apply(induct Δ)
apply(auto simp add: fresh_list_cons fresh_prod fresh_atm fresh_list_nil)
done
lemma id_redu:
shows "(idn Γ x),(idc Δ a)<M> ⟶⇩a* M"
apply(nominal_induct M avoiding: Γ Δ x a rule: trm.strong_induct)
apply(auto)
apply(case_tac "name♯(idn Γ x)")
apply(simp add: lookup1)
apply(case_tac "coname♯(idc Δ a)")
apply(simp add: lookup3)
apply(simp add: lookup4)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp)
apply(simp add: lookup2)
apply(case_tac "coname♯(idc Δ a)")
apply(simp add: lookup5)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp)
apply(simp add: lookup6)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp)
apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name psubst_fresh_coname fresh_atm fresh_prod )[1]
apply(simp add: lookup7 lookup8)
apply(simp add: lookup7 lookup8)
apply(simp add: a_star_Cut)
apply(simp add: lookup7 lookup8)
apply(simp add: a_star_Cut)
apply(simp add: a_star_Cut)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc Δ a) coname")
apply(simp)
apply(simp add: a_star_NotR)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(assumption)
apply(simp add: crename_fresh)
apply(simp add: a_star_NotR)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn Γ x) name")
apply(simp)
apply(simp add: a_star_NotL)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(assumption)
apply(simp add: nrename_fresh)
apply(simp add: a_star_NotL)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc Δ a) coname3")
apply(simp)
apply(simp add: a_star_AndR)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm1>")
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm2>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(auto simp add: fresh_idn fresh_idc psubst_fresh_name crename_fresh fresh_atm fresh_prod )[1]
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp add: fresh_prod fresh_atm)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp add: fresh_prod fresh_atm)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp)
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_AndR)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn Γ x) name2")
apply(simp)
apply(simp add: a_star_AndL1)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_AndL1)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn Γ x) name2")
apply(simp)
apply(simp add: a_star_AndL2)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_AndL2)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc Δ a) coname2")
apply(simp)
apply(simp add: a_star_OrR1)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_OrR1)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc Δ a) coname2")
apply(simp)
apply(simp add: a_star_OrR2)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_OrR2)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn Γ x) name3")
apply(simp)
apply(simp add: a_star_OrL)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm1>")
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm2>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(simp)
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_OrL)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findc (idc Δ a) coname2")
apply(simp)
apply(simp add: a_star_ImpR)
apply(auto)[1]
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(drule idc_cmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(rule fic.intros)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule crename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(simp)
apply(simp add: crename_fresh)
apply(simp add: a_star_ImpR)
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(simp add: fresh_idn fresh_idc)
apply(case_tac "findn (idn Γ x) name2")
apply(simp)
apply(simp add: a_star_ImpL)
apply(auto)[1]
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(drule idn_nmaps)
apply(simp)
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm1>")
apply(subgoal_tac "c♯idn Γ x,idc Δ a<trm2>")
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(rule fin.intros)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(rule aux3)
apply(rule nrename.simps)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_coname)
apply(rule fresh_idn)
apply(simp add: fresh_atm)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(auto simp add: fresh_prod fresh_atm)[1]
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
apply(simp)
apply(simp add: nrename_fresh)
apply(simp add: a_star_ImpL)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
apply(rule psubst_fresh_name)
apply(rule fresh_idn)
apply(simp)
apply(rule fresh_idc)
apply(simp)
apply(simp)
done
theorem ALL_SNa:
assumes a: "Γ ⊢ M ⊢ Δ"
shows "SNa M"
proof -
fix x have "(idc Δ x) ccloses Δ" by (simp add: ccloses_id)
moreover
fix a have "(idn Γ a) ncloses Γ" by (simp add: ncloses_id)
ultimately have "SNa ((idn Γ a),(idc Δ x)<M>)" using a by (simp add: all_CAND)
moreover
have "((idn Γ a),(idc Δ x)<M>) ⟶⇩a* M" by (simp add: id_redu)
ultimately show "SNa M" by (simp add: a_star_preserves_SNa)
qed
end