Theory State

(*  Title:      HOL/MicroJava/J/State.thy
    Author:     David von Oheimb
    Copyright   1999 Technische Universitaet Muenchen
*)

section ‹Program State›

theory State
imports TypeRel Value
begin

type_synonym 
  fields' = "(vname × cname  val)"  ― ‹field name, defining class, value›

type_synonym
  obj = "cname × fields'"    ― ‹class instance with class name and fields›

definition obj_ty :: "obj => ty" where
 "obj_ty obj  == Class (fst obj)"

definition init_vars :: "('a × ty) list => ('a  val)" where
 "init_vars == map_of o map (λ(n,T). (n,default_val T))"

type_synonym aheap = "loc  obj"    ― ‹"heap›" used in a translation below›
type_synonym locals = "vname  val"  ― ‹simple state, i.e. variable contents›

type_synonym state = "aheap × locals"      ― ‹heap, local parameter including This›
type_synonym xstate = "val option × state" ― ‹state including exception information›

abbreviation (input)
  heap :: "state => aheap"
  where "heap == fst"

abbreviation (input)
  locals :: "state => locals"
  where "locals == snd"

abbreviation "Norm s == (None, s)"

abbreviation (input)
  abrupt :: "xstate  val option"
  where "abrupt == fst"

abbreviation (input)
  store :: "xstate  state"
  where "store == snd"

abbreviation
  lookup_obj :: "state  val  obj"
  where "lookup_obj s a' == the (heap s (the_Addr a'))"

definition raise_if :: "bool  xcpt  val option  val option" where
  "raise_if b x xo  if b   (xo = None) then Some (Addr (XcptRef x)) else xo"

text ‹Make new_Addr› completely specified (at least for the code generator)›
(*
definition new_Addr  :: "aheap => loc × val option" where
  "new_Addr h ≡ SOME (a,x). (h a = None ∧  x = None) |  x = Some (Addr (XcptRef OutOfMemory))"
*)
consts nat_to_loc' :: "nat => loc'"
code_datatype nat_to_loc'
definition new_Addr  :: "aheap => loc × val option" where
  "new_Addr h  
   if n. h (Loc (nat_to_loc' n)) = None 
   then (Loc (nat_to_loc' (LEAST n. h (Loc (nat_to_loc' n)) = None)), None)
   else (Loc (nat_to_loc' 0), Some (Addr (XcptRef OutOfMemory)))"

definition np    :: "val => val option => val option" where
 "np v == raise_if (v = Null) NullPointer"

definition c_hupd  :: "aheap => xstate => xstate" where
 "c_hupd h'== λ(xo,(h,l)). if xo = None then (None,(h',l)) else (xo,(h,l))"

definition cast_ok :: "'c prog => cname => aheap => val => bool" where
 "cast_ok G C h v == v = Null  Gobj_ty (the (h (the_Addr v))) Class C"

lemma obj_ty_def2 [simp]: "obj_ty (C,fs) = Class C"
apply (unfold obj_ty_def)
apply (simp (no_asm))
done


lemma new_AddrD: "new_Addr hp = (ref, xcp) 
  hp ref = None  xcp = None  xcp = Some (Addr (XcptRef OutOfMemory))"
apply (drule sym)
apply (unfold new_Addr_def)
apply (simp split: if_split_asm)
apply (erule LeastI)
done

lemma raise_if_True [simp]: "raise_if True x y  None"
apply (unfold raise_if_def)
apply auto
done

lemma raise_if_False [simp]: "raise_if False x y = y"
apply (unfold raise_if_def)
apply auto
done

lemma raise_if_Some [simp]: "raise_if c x (Some y)  None"
apply (unfold raise_if_def)
apply auto
done

lemma raise_if_Some2 [simp]: 
  "raise_if c z (if x = None then Some y else x)  None"
unfolding raise_if_def by (induct x) auto

lemma raise_if_SomeD [rule_format (no_asm)]: 
  "raise_if c x y = Some z  c   Some z = Some (Addr (XcptRef x)) |  y = Some z"
apply (unfold raise_if_def)
apply auto
done

lemma raise_if_NoneD [rule_format (no_asm)]: 
  "raise_if c x y = None --> ¬ c   y = None"
apply (unfold raise_if_def)
apply auto
done

lemma np_NoneD [rule_format (no_asm)]: 
  "np a' x' = None --> x' = None   a'  Null"
apply (unfold np_def raise_if_def)
apply auto
done

lemma np_None [rule_format (no_asm), simp]: "a'  Null --> np a' x' = x'"
apply (unfold np_def raise_if_def)
apply auto
done

lemma np_Some [simp]: "np a' (Some xc) = Some xc"
apply (unfold np_def raise_if_def)
apply auto
done

lemma np_Null [simp]: "np Null None = Some (Addr (XcptRef NullPointer))"
apply (unfold np_def raise_if_def)
apply auto
done

lemma np_Addr [simp]: "np (Addr a) None = None"
apply (unfold np_def raise_if_def)
apply auto
done

lemma np_raise_if [simp]: "(np Null (raise_if c xc None)) =  
  Some (Addr (XcptRef (if c then  xc else NullPointer)))"
apply (unfold raise_if_def)
apply (simp (no_asm))
done

lemma c_hupd_fst [simp]: "fst (c_hupd h (x, s)) = x"
by (simp add: c_hupd_def split_beta)

text ‹Naive implementation for termnew_Addr by exhaustive search›

definition gen_new_Addr :: "aheap => nat  loc × val option" where
  "gen_new_Addr h n  
   if a. a  n  h (Loc (nat_to_loc' a)) = None 
   then (Loc (nat_to_loc' (LEAST a. a  n  h (Loc (nat_to_loc' a)) = None)), None)
   else (Loc (nat_to_loc' 0), Some (Addr (XcptRef OutOfMemory)))"

lemma new_Addr_code_code [code]:
  "new_Addr h = gen_new_Addr h 0"
by(simp only: new_Addr_def gen_new_Addr_def split: if_split) simp

lemma gen_new_Addr_code [code]:
  "gen_new_Addr h n = (if h (Loc (nat_to_loc' n)) = None then (Loc (nat_to_loc' n), None) else gen_new_Addr h (Suc n))"
apply(simp add: gen_new_Addr_def)
apply(rule impI)
apply(rule conjI)
 apply safe[1]
  apply(auto intro: arg_cong[where f=nat_to_loc'] Least_equality)[1]
 apply(rule arg_cong[where f=nat_to_loc'])
 apply(rule arg_cong[where f=Least])
 apply(rule ext)
 apply(safe, simp_all)[1]
 apply(rename_tac "n'")
 apply(case_tac "n = n'", simp_all)[1]
apply clarify
apply(subgoal_tac "a = n")
 apply(auto intro: Least_equality arg_cong[where f=nat_to_loc'])[1]
apply(rule ccontr)
apply(erule_tac x="a" in allE)
apply simp
done

instantiation loc' :: equal
begin

definition "HOL.equal (l :: loc') l'  l = l'"
instance by standard (simp add: equal_loc'_def)

end

end