Theory JBasis
chapter ‹Java Source Language \label{cha:j}›
section ‹Some Auxiliary Definitions›
theory JBasis
imports
Main
"HOL-Library.Transitive_Closure_Table"
"HOL-Eisbach.Eisbach"
begin
lemmas [simp] = Let_def
subsection "unique"
definition unique :: "('a × 'b) list => bool" where
"unique == distinct ∘ map fst"
lemma fst_in_set_lemma: "(x, y) ∈ set xys ⟹ x ∈ fst ` set xys"
by (induct xys) auto
lemma unique_Nil [simp]: "unique []"
by (simp add: unique_def)
lemma unique_Cons [simp]: "unique ((x,y)#l) = (unique l & (∀y. (x,y) ∉ set l))"
by (auto simp: unique_def dest: fst_in_set_lemma)
lemma unique_append: "unique l' ⟹ unique l ⟹
(∀(x,y) ∈ set l. ∀(x',y') ∈ set l'. x' ≠ x) ⟹ unique (l @ l')"
by (induct l) (auto dest: fst_in_set_lemma)
lemma unique_map_inj: "unique l ==> inj f ==> unique (map (%(k,x). (f k, g k x)) l)"
by (induct l) (auto dest: fst_in_set_lemma simp add: inj_eq)
subsection "More about Maps"
lemma map_of_SomeI: "unique l ⟹ (k, x) ∈ set l ⟹ map_of l k = Some x"
by (induct l) auto
lemma Ball_set_table: "(∀(x,y)∈set l. P x y) ==> (∀x. ∀y. map_of l x = Some y --> P x y)"
by (induct l) auto
lemma table_of_remap_SomeD:
"map_of (map (λ((k,k'),x). (k,(k',x))) t) k = Some (k',x) ==>
map_of t (k, k') = Some x"
by (atomize (full), induct t) auto
end