Theory Abstraction
section ‹Example Featuring Metis's Support for Lambda-Abstractions›
theory Abstraction
imports "HOL-Library.FuncSet"
begin
lemma "x < 1 ∧ ((=) = (=)) ⟹ ((=) = (=)) ∧ x < (2::nat)"
by (metis nat_1_add_1 trans_less_add2)
lemma "(=) = (λx y. y = x)"
by metis
consts
monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
pset :: "'a set => 'a set"
order :: "'a set => ('a * 'a) set"
lemma "a ∈ {x. P x} ⟹ P a"
proof -
assume "a ∈ {x. P x}"
thus "P a" by (metis mem_Collect_eq)
qed
lemma Collect_triv: "a ∈ {x. P x} ⟹ P a"
by (metis mem_Collect_eq)
lemma "a ∈ {x. P x --> Q x} ⟹ a ∈ {x. P x} ⟹ a ∈ {x. Q x}"
by (metis Collect_imp_eq ComplD UnE)
lemma "(a, b) ∈ Sigma A B ⟹ a ∈ A ∧ b ∈ B a"
proof -
assume A1: "(a, b) ∈ Sigma A B"
hence F1: "b ∈ B a" by (metis mem_Sigma_iff)
have F2: "a ∈ A" by (metis A1 mem_Sigma_iff)
have "b ∈ B a" by (metis F1)
thus "a ∈ A ∧ b ∈ B a" by (metis F2)
qed
lemma Sigma_triv: "(a, b) ∈ Sigma A B ⟹ a ∈ A & b ∈ B a"
by (metis SigmaD1 SigmaD2)
lemma "(a, b) ∈ (SIGMA x:A. {y. x = f y}) ⟹ a ∈ A ∧ a = f b"
by (metis (full_types, lifting) CollectD SigmaD1 SigmaD2)
lemma "(a, b) ∈ (SIGMA x:A. {y. x = f y}) ⟹ a ∈ A ∧ a = f b"
proof -
assume A1: "(a, b) ∈ (SIGMA x:A. {y. x = f y})"
hence F1: "a ∈ A" by (metis mem_Sigma_iff)
have "b ∈ {R. a = f R}" by (metis A1 mem_Sigma_iff)
hence "a = f b" by (metis (full_types) mem_Collect_eq)
thus "a ∈ A ∧ a = f b" by (metis F1)
qed
lemma "(cl, f) ∈ CLF ⟹ CLF = (SIGMA cl: CL.{f. f ∈ pset cl}) ⟹ f ∈ pset cl"
by (metis Collect_mem_eq SigmaD2)
lemma "(cl, f) ∈ CLF ⟹ CLF = (SIGMA cl: CL.{f. f ∈ pset cl}) ⟹ f ∈ pset cl"
proof -
assume A1: "(cl, f) ∈ CLF"
assume A2: "CLF = (SIGMA cl:CL. {f. f ∈ pset cl})"
have "∀v u. (u, v) ∈ CLF ⟶ v ∈ {R. R ∈ pset u}" by (metis A2 mem_Sigma_iff)
hence "∀v u. (u, v) ∈ CLF ⟶ v ∈ pset u" by (metis mem_Collect_eq)
thus "f ∈ pset cl" by (metis A1)
qed
lemma
"(cl, f) ∈ (SIGMA cl: CL. {f. f ∈ pset cl → pset cl}) ⟹
f ∈ pset cl → pset cl"
by (metis (no_types) Collect_mem_eq Sigma_triv)
lemma
"(cl, f) ∈ (SIGMA cl: CL. {f. f ∈ pset cl → pset cl}) ⟹
f ∈ pset cl → pset cl"
proof -
assume A1: "(cl, f) ∈ (SIGMA cl:CL. {f. f ∈ pset cl → pset cl})"
have "f ∈ {R. R ∈ pset cl → pset cl}" using A1 by simp
thus "f ∈ pset cl → pset cl" by (metis mem_Collect_eq)
qed
lemma
"(cl, f) ∈ (SIGMA cl: CL. {f. f ∈ pset cl ∩ cl}) ⟹
f ∈ pset cl ∩ cl"
by (metis (no_types) Collect_conj_eq Int_def Sigma_triv inf_idem)
lemma
"(cl, f) ∈ (SIGMA cl: CL. {f. f ∈ pset cl ∩ cl}) ⟹
f ∈ pset cl ∩ cl"
proof -
assume A1: "(cl, f) ∈ (SIGMA cl:CL. {f. f ∈ pset cl ∩ cl})"
have "f ∈ {R. R ∈ pset cl ∩ cl}" using A1 by simp
hence "f ∈ Id_on cl `` pset cl" by (metis Int_commute Image_Id_on mem_Collect_eq)
hence "f ∈ cl ∩ pset cl" by (metis Image_Id_on)
thus "f ∈ pset cl ∩ cl" by (metis Int_commute)
qed
lemma
"(cl, f) ∈ (SIGMA cl: CL. {f. f ∈ pset cl → pset cl & monotone f (pset cl) (order cl)}) ⟹
(f ∈ pset cl → pset cl) & (monotone f (pset cl) (order cl))"
by auto
lemma
"(cl, f) ∈ CLF ⟹
CLF ⊆ (SIGMA cl: CL. {f. f ∈ pset cl ∩ cl}) ⟹
f ∈ pset cl ∩ cl"
by (metis (lifting) CollectD Sigma_triv subsetD)
lemma
"(cl, f) ∈ CLF ⟹
CLF = (SIGMA cl: CL. {f. f ∈ pset cl ∩ cl}) ⟹
f ∈ pset cl ∩ cl"
by (metis (lifting) CollectD Sigma_triv)
lemma
"(cl, f) ∈ CLF ⟹
CLF ⊆ (SIGMA cl': CL. {f. f ∈ pset cl' → pset cl'}) ⟹
f ∈ pset cl → pset cl"
by (metis (lifting) CollectD Sigma_triv subsetD)
lemma
"(cl, f) ∈ CLF ⟹
CLF = (SIGMA cl: CL. {f. f ∈ pset cl → pset cl}) ⟹
f ∈ pset cl → pset cl"
by (metis (lifting) CollectD Sigma_triv)
lemma
"(cl, f) ∈ CLF ⟹
CLF = (SIGMA cl: CL. {f. f ∈ pset cl → pset cl & monotone f (pset cl) (order cl)}) ⟹
(f ∈ pset cl → pset cl) & (monotone f (pset cl) (order cl))"
by auto
lemma "map (λx. (f x, g x)) xs = zip (map f xs) (map g xs)"
apply (induct xs)
apply (metis list.map(1) zip_Nil)
by auto
lemma
"map (λw. (w → w, w × w)) xs =
zip (map (λw. w → w) xs) (map (λw. w × w) xs)"
apply (induct xs)
apply (metis list.map(1) zip_Nil)
by auto
lemma "(λx. Suc (f x)) ` {x. even x} ⊆ A ⟹ ∀x. even x --> Suc (f x) ∈ A"
by (metis mem_Collect_eq image_eqI subsetD)
lemma
"(λx. f (f x)) ` ((λx. Suc(f x)) ` {x. even x}) ⊆ A ⟹
(∀x. even x --> f (f (Suc(f x))) ∈ A)"
by (metis mem_Collect_eq imageI rev_subsetD)
lemma "f ∈ (λu v. b × u × v) ` A ⟹ ∀u v. P (b × u × v) ⟹ P(f y)"
by (metis (lifting) imageE)
lemma image_TimesA: "(λ(x, y). (f x, g y)) ` (A × B) = (f ` A) × (g ` B)"
by (metis map_prod_def map_prod_surj_on)
lemma image_TimesB:
"(λ(x, y, z). (f x, g y, h z)) ` (A × B × C) = (f ` A) × (g ` B) × (h ` C)"
by force
lemma image_TimesC:
"(λ(x, y). (x → x, y × y)) ` (A × B) =
((λx. x → x) ` A) × ((λy. y × y) ` B)"
by (metis image_TimesA)
end