Theory Comparator

(*  Title:      HOL/Library/Comparator.thy
    Author:     Florian Haftmann, TU Muenchen
*)

theory Comparator
  imports Main
begin

section ‹Comparators on linear quasi-orders›

subsection ‹Basic properties›

datatype comp = Less | Equiv | Greater

locale comparator =
  fixes cmp :: "'a  'a  comp"
  assumes refl [simp]: "a. cmp a a = Equiv"
    and trans_equiv: "a b c. cmp a b = Equiv  cmp b c = Equiv  cmp a c = Equiv"
  assumes trans_less: "cmp a b = Less  cmp b c = Less  cmp a c = Less"
    and greater_iff_sym_less: "b a. cmp b a = Greater  cmp a b = Less"
begin

text ‹Dual properties›

lemma trans_greater:
  "cmp a c = Greater" if "cmp a b = Greater" "cmp b c = Greater"
  using that greater_iff_sym_less trans_less by blast

lemma less_iff_sym_greater:
  "cmp b a = Less  cmp a b = Greater"
  by (simp add: greater_iff_sym_less)

text ‹The equivalence part›

lemma sym:
  "cmp b a = Equiv  cmp a b = Equiv"
  by (metis (full_types) comp.exhaust greater_iff_sym_less)

lemma reflp:
  "reflp (λa b. cmp a b = Equiv)"
  by (rule reflpI) simp

lemma symp:
  "symp (λa b. cmp a b = Equiv)"
  by (rule sympI) (simp add: sym)

lemma transp:
  "transp (λa b. cmp a b = Equiv)"
  by (rule transpI) (fact trans_equiv)

lemma equivp:
  "equivp (λa b. cmp a b = Equiv)"
  using reflp symp transp by (rule equivpI)

text ‹The strict part›

lemma irreflp_less:
  "irreflp (λa b. cmp a b = Less)"
  by (rule irreflpI) simp

lemma irreflp_greater:
  "irreflp (λa b. cmp a b = Greater)"
  by (rule irreflpI) simp

lemma asym_less:
  "cmp b a  Less" if "cmp a b = Less"
  using that greater_iff_sym_less by force

lemma asym_greater:
  "cmp b a  Greater" if "cmp a b = Greater"
  using that greater_iff_sym_less by force

lemma asymp_less:
  "asymp (λa b. cmp a b = Less)"
  using irreflp_less by (auto intro: asympI dest: asym_less)

lemma asymp_greater:
  "asymp (λa b. cmp a b = Greater)"
  using irreflp_greater by (auto intro!: asympI dest: asym_greater)

lemma trans_equiv_less:
  "cmp a c = Less" if "cmp a b = Equiv" and "cmp b c = Less"
  using that
  by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)

lemma trans_less_equiv:
  "cmp a c = Less" if "cmp a b = Less" and "cmp b c = Equiv"
  using that
  by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)

lemma trans_equiv_greater:
  "cmp a c = Greater" if "cmp a b = Equiv" and "cmp b c = Greater"
  using that by (simp add: sym [of a b] greater_iff_sym_less trans_less_equiv)

lemma trans_greater_equiv:
  "cmp a c = Greater" if "cmp a b = Greater" and "cmp b c = Equiv"
  using that by (simp add: sym [of b c] greater_iff_sym_less trans_equiv_less)

lemma transp_less:
  "transp (λa b. cmp a b = Less)"
  by (rule transpI) (fact trans_less)

lemma transp_greater:
  "transp (λa b. cmp a b = Greater)"
  by (rule transpI) (fact trans_greater)

text ‹The reflexive part›

lemma reflp_not_less:
  "reflp (λa b. cmp a b  Less)"
  by (rule reflpI) simp

lemma reflp_not_greater:
  "reflp (λa b. cmp a b  Greater)"
  by (rule reflpI) simp

lemma quasisym_not_less:
  "cmp a b = Equiv" if "cmp a b  Less" and "cmp b a  Less"
  using that comp.exhaust greater_iff_sym_less by auto

lemma quasisym_not_greater:
  "cmp a b = Equiv" if "cmp a b  Greater" and "cmp b a  Greater"
  using that comp.exhaust greater_iff_sym_less by auto

lemma trans_not_less:
  "cmp a c  Less" if "cmp a b  Less" "cmp b c  Less"
  using that by (metis comp.exhaust greater_iff_sym_less trans_equiv trans_less)

lemma trans_not_greater:
  "cmp a c  Greater" if "cmp a b  Greater" "cmp b c  Greater"
  using that greater_iff_sym_less trans_not_less by blast

lemma transp_not_less:
  "transp (λa b. cmp a b  Less)"
  by (rule transpI) (fact trans_not_less)

lemma transp_not_greater:
  "transp (λa b. cmp a b  Greater)"
  by (rule transpI) (fact trans_not_greater)

text ‹Substitution under equivalences›

lemma equiv_subst_left:
  "cmp z y = comp  cmp x y = comp" if "cmp z x = Equiv" for comp
proof -
  from that have "cmp x z = Equiv"
    by (simp add: sym)
  with that show ?thesis
    by (cases comp) (auto intro: trans_equiv trans_equiv_less trans_equiv_greater)
qed

lemma equiv_subst_right:
  "cmp x z = comp  cmp x y = comp" if "cmp z y = Equiv" for comp
proof -
  from that have "cmp y z = Equiv"
    by (simp add: sym)
  with that show ?thesis
    by (cases comp) (auto intro: trans_equiv trans_less_equiv trans_greater_equiv)
qed

end

typedef 'a comparator = "{cmp :: 'a  'a  comp. comparator cmp}"
  morphisms compare Abs_comparator
proof -
  have "comparator (λ_ _. Equiv)"
    by standard simp_all
  then show ?thesis
    by auto
qed

setup_lifting type_definition_comparator

global_interpretation compare: comparator "compare cmp"
  using compare [of cmp] by simp

lift_definition flat :: "'a comparator"
  is "λ_ _. Equiv" by standard simp_all

instantiation comparator :: (linorder) default
begin

lift_definition default_comparator :: "'a comparator"
  is "λx y. if x < y then Less else if x > y then Greater else Equiv"
  by standard (auto split: if_splits)

instance ..

end

text ‹A rudimentary quickcheck setup›

instantiation comparator :: (enum) equal
begin

lift_definition equal_comparator :: "'a comparator  'a comparator  bool"
  is "λf g. x  set Enum.enum. f x = g x" .

instance
  by (standard; transfer) (auto simp add: enum_UNIV)

end

lemma [code]:
  "HOL.equal cmp1 cmp2  Enum.enum_all (λx. compare cmp1 x = compare cmp2 x)"
  by transfer (simp add: enum_UNIV)

lemma [code nbe]:
  "HOL.equal (cmp :: 'a::enum comparator) cmp  True"
  by (fact equal_refl)

instantiation comparator :: ("{linorder, typerep}") full_exhaustive
begin

definition full_exhaustive_comparator ::
  "('a comparator × (unit  term)  (bool × term list) option)
     natural  (bool × term list) option"
  where "full_exhaustive_comparator f s =
    Quickcheck_Exhaustive.orelse
      (f (flat, (λu. Code_Evaluation.Const (STR ''Comparator.flat'') TYPEREP('a comparator))))
      (f (default, (λu. Code_Evaluation.Const (STR ''HOL.default_class.default'') TYPEREP('a comparator))))"

instance ..

end


subsection ‹Fundamental comparator combinators›

lift_definition reversed :: "'a comparator  'a comparator"
  is "λcmp a b. cmp b a"
proof -
  fix cmp :: "'a  'a  comp"
  assume "comparator cmp"
  then interpret comparator cmp .
  show "comparator (λa b. cmp b a)"
    by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed

lift_definition key :: "('b  'a)  'a comparator  'b comparator"
  is "λf cmp a b. cmp (f a) (f b)"
proof -
  fix cmp :: "'a  'a  comp" and f :: "'b  'a"
  assume "comparator cmp"
  then interpret comparator cmp .
  show "comparator (λa b. cmp (f a) (f b))"
    by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed


subsection ‹Direct implementations for linear orders on selected types›

definition comparator_bool :: "bool comparator"
  where [simp, code_abbrev]: "comparator_bool = default"

lemma compare_comparator_bool [code abstract]:
  "compare comparator_bool = (λp q.
    if p then if q then Equiv else Greater
    else if q then Less else Equiv)"
  by (auto simp add: fun_eq_iff) (transfer; simp)+

definition raw_comparator_nat :: "nat  nat  comp"
  where [simp]: "raw_comparator_nat = compare default"

lemma default_comparator_nat [simp, code]:
  "raw_comparator_nat (0::nat) 0 = Equiv"
  "raw_comparator_nat (Suc m) 0 = Greater"
  "raw_comparator_nat 0 (Suc n) = Less"
  "raw_comparator_nat (Suc m) (Suc n) = raw_comparator_nat m n"
  by (transfer; simp)+

definition comparator_nat :: "nat comparator"
  where [simp, code_abbrev]: "comparator_nat = default"

lemma compare_comparator_nat [code abstract]:
  "compare comparator_nat = raw_comparator_nat"
  by simp

definition comparator_linordered_group :: "'a::linordered_ab_group_add comparator"
  where [simp, code_abbrev]: "comparator_linordered_group = default"

lemma comparator_linordered_group [code abstract]:
  "compare comparator_linordered_group = (λa b.
    let c = a - b in if c < 0 then Less
    else if c = 0 then Equiv else Greater)"
proof (rule ext)+
  fix a b :: 'a
  show "compare comparator_linordered_group a b =
    (let c = a - b in if c < 0 then Less
       else if c = 0 then Equiv else Greater)"
    by (simp add: Let_def not_less) (transfer; auto)
qed

end