Theory Centered_Division

(*  Author:  Florian Haftmann, TU Muenchen
*)

section ‹Division with modulus centered towards zero.›

theory Centered_Division
  imports Main
begin

lemma off_iff_abs_mod_2_eq_one:
  odd l  ¦l¦ mod 2 = 1 for l :: int
  by (simp flip: odd_iff_mod_2_eq_one)

text ‹
  \noindent The following specification of division on integers centers
  the modulus around zero.  This is useful e.g.~to define division
  on Gauss numbers.
  N.b.: This is not mentioned \cite{leijen01}.
›

definition centered_divide :: int  int  int  (infixl cdiv 70)
  where k cdiv l = sgn l * ((k + ¦l¦ div 2) div ¦l¦)

definition centered_modulo :: int  int  int  (infixl cmod 70)
  where k cmod l = (k + ¦l¦ div 2) mod ¦l¦ - ¦l¦ div 2

text ‹
  \noindent Example: @{lemma k cmod 5  {-2, -1, 0, 1, 2} by (auto simp add: centered_modulo_def)}

lemma signed_take_bit_eq_cmod:
  signed_take_bit n k = k cmod (2 ^ Suc n)
  by (simp only: centered_modulo_def power_abs abs_numeral flip: take_bit_eq_mod)
    (simp add: signed_take_bit_eq_take_bit_shift)

text ‹
  \noindent Property @{thm signed_take_bit_eq_cmod [no_vars]} is the key to generalize
  centered division to arbitrary structures satisfying classring_bit_operations,
  but so far it is not clear what practical relevance that would have.
›

lemma cdiv_mult_cmod_eq:
  k cdiv l * l + k cmod l = k
proof -
  have *: l * (sgn l * j) = ¦l¦ * j for j
    by (simp add: ac_simps abs_sgn)
  show ?thesis
    by (simp add: centered_divide_def centered_modulo_def algebra_simps *)
qed

lemma mult_cdiv_cmod_eq:
  l * (k cdiv l) + k cmod l = k
  using cdiv_mult_cmod_eq [of k l] by (simp add: ac_simps)

lemma cmod_cdiv_mult_eq:
  k cmod l + k cdiv l * l = k
  using cdiv_mult_cmod_eq [of k l] by (simp add: ac_simps)

lemma cmod_mult_cdiv_eq:
  k cmod l + l * (k cdiv l) = k
  using cdiv_mult_cmod_eq [of k l] by (simp add: ac_simps)

lemma minus_cdiv_mult_eq_cmod:
  k - k cdiv l * l = k cmod l
  by (rule add_implies_diff [symmetric]) (fact cmod_cdiv_mult_eq)

lemma minus_mult_cdiv_eq_cmod:
  k - l * (k cdiv l) = k cmod l
  by (rule add_implies_diff [symmetric]) (fact cmod_mult_cdiv_eq)

lemma minus_cmod_eq_cdiv_mult:
  k - k cmod l = k cdiv l * l
  by (rule add_implies_diff [symmetric]) (fact cdiv_mult_cmod_eq)

lemma minus_cmod_eq_mult_cdiv:
  k - k cmod l = l * (k cdiv l)
  by (rule add_implies_diff [symmetric]) (fact mult_cdiv_cmod_eq)

lemma cdiv_0_eq [simp]:
  k cdiv 0 = 0
  by (simp add: centered_divide_def)

lemma cmod_0_eq [simp]:
  k cmod 0 = k
  by (simp add: centered_modulo_def)

lemma cdiv_1_eq [simp]:
  k cdiv 1 = k
  by (simp add: centered_divide_def)

lemma cmod_1_eq [simp]:
  k cmod 1 = 0
  by (simp add: centered_modulo_def)

lemma zero_cdiv_eq [simp]:
  0 cdiv k = 0
  by (auto simp add: centered_divide_def not_less zdiv_eq_0_iff)

lemma zero_cmod_eq [simp]:
  0 cmod k = 0
  by (auto simp add: centered_modulo_def not_less zmod_trivial_iff)

lemma cdiv_minus_eq:
  k cdiv - l = - (k cdiv l)
  by (simp add: centered_divide_def)

lemma cmod_minus_eq [simp]:
  k cmod - l = k cmod l
  by (simp add: centered_modulo_def)

lemma cdiv_abs_eq:
  k cdiv ¦l¦ = sgn l * (k cdiv l)
  by (simp add: centered_divide_def)

lemma cmod_abs_eq [simp]:
  k cmod ¦l¦ = k cmod l
  by (simp add: centered_modulo_def)

lemma nonzero_mult_cdiv_cancel_right:
  k * l cdiv l = k if l  0
proof -
  have sgn l * k * ¦l¦ cdiv l = k
    using that by (simp add: centered_divide_def)
  with that show ?thesis
    by (simp add: ac_simps abs_sgn)
qed

lemma cdiv_self_eq [simp]:
  k cdiv k = 1 if k  0
  using that nonzero_mult_cdiv_cancel_right [of k 1] by simp

lemma cmod_self_eq [simp]:
  k cmod k = 0
proof -
  have (sgn k * ¦k¦ + ¦k¦ div 2) mod ¦k¦ = ¦k¦ div 2
    by (auto simp add: zmod_trivial_iff)
  also have sgn k * ¦k¦ = k
    by (simp add: abs_sgn)
  finally show ?thesis
    by (simp add: centered_modulo_def algebra_simps)
qed

lemma cmod_less_divisor:
  k cmod l < ¦l¦ - ¦l¦ div 2 if l  0
  using that pos_mod_bound [of ¦l¦] by (simp add: centered_modulo_def)

lemma cmod_less_equal_divisor:
  k cmod l  ¦l¦ div 2 if l  0
proof -
  from that cmod_less_divisor [of l k]
  have k cmod l < ¦l¦ - ¦l¦ div 2
    by simp
  also have ¦l¦ - ¦l¦ div 2 = ¦l¦ div 2 + of_bool (odd l)
    by auto
  finally show ?thesis
    by (cases even l) simp_all
qed

lemma divisor_less_equal_cmod':
  ¦l¦ div 2 - ¦l¦  k cmod l if l  0
proof -
  have 0  (k + ¦l¦ div 2) mod ¦l¦
    using that pos_mod_sign [of ¦l¦] by simp
  then show ?thesis
    by (simp_all add: centered_modulo_def)
qed

lemma divisor_less_equal_cmod:
  - (¦l¦ div 2)  k cmod l if l  0
  using that divisor_less_equal_cmod' [of l k]
  by (simp add: centered_modulo_def)

lemma abs_cmod_less_equal:
  ¦k cmod l¦  ¦l¦ div 2 if l  0
  using that divisor_less_equal_cmod [of l k]
  by (simp add: abs_le_iff cmod_less_equal_divisor)

end