Theory Term

(*  Title:      HOL/Induct/Term.thy
    Author:     Stefan Berghofer,  TU Muenchen
*)

section ‹Terms over a given alphabet›

theory Term
imports Main
begin

datatype ('a, 'b) "term" =
    Var 'a
  | App 'b "('a, 'b) term list"


text ‹\medskip Substitution function on terms›

primrec subst_term :: "('a  ('a, 'b) term)  ('a, 'b) term  ('a, 'b) term"
  and subst_term_list :: "('a  ('a, 'b) term)  ('a, 'b) term list  ('a, 'b) term list"
where
  "subst_term f (Var a) = f a"
| "subst_term f (App b ts) = App b (subst_term_list f ts)"
| "subst_term_list f [] = []"
| "subst_term_list f (t # ts) = subst_term f t # subst_term_list f ts"


text ‹\medskip A simple theorem about composition of substitutions›

lemma subst_comp:
  "subst_term (subst_term f1  f2) t =
    subst_term f1 (subst_term f2 t)"
and "subst_term_list (subst_term f1  f2) ts =
    subst_term_list f1 (subst_term_list f2 ts)"
  by (induct t and ts rule: subst_term.induct subst_term_list.induct) simp_all


text ‹\medskip Alternative induction rule›

lemma
  assumes var: "v. P (Var v)"
    and app: "f ts. (t  set ts. P t)  P (App f ts)"
  shows term_induct2: "P t"
    and "t  set ts. P t"
  apply (induct t and ts rule: subst_term.induct subst_term_list.induct)
     apply (rule var)
    apply (rule app)
    apply assumption
   apply simp_all
  done

end