Theory Import_Setup
section ‹Importer machinery and required theorems›
theory Import_Setup
imports Main
keywords "import_type_map" "import_const_map" "import_file" :: thy_decl
begin
ML_file ‹import_data.ML›
lemma light_ex_imp_nonempty:
"P t ⟹ ∃x. x ∈ Collect P"
by auto
lemma typedef_hol2hollight:
assumes a: "type_definition Rep Abs (Collect P)"
shows "Abs (Rep a) = a ∧ P r = (Rep (Abs r) = r)"
by (metis type_definition.Rep_inverse type_definition.Abs_inverse
type_definition.Rep a mem_Collect_eq)
lemma ext2:
"(⋀x. f x = g x) ⟹ f = g"
by auto
ML_file ‹import_rule.ML›
end