Theory Asig

(*  Title:      HOL/IOA/Asig.thy
    Author:     Tobias Nipkow & Konrad Slind
    Copyright   1994  TU Muenchen
*)

section ‹Action signatures›

theory Asig
imports Main
begin

type_synonym 'a signature = "('a set × 'a set × 'a set)"

definition "inputs" :: "'action signature  'action set"
  where asig_inputs_def: "inputs  fst"

definition "outputs" :: "'action signature  'action set"
  where asig_outputs_def: "outputs  (fst  snd)"

definition "internals" :: "'action signature  'action set"
  where asig_internals_def: "internals  (snd  snd)"

definition "actions" :: "'action signature  'action set"
  where actions_def: "actions(asig)  (inputs(asig)  outputs(asig)  internals(asig))"

definition externals :: "'action signature  'action set"
  where externals_def: "externals(asig)  (inputs(asig)  outputs(asig))"

definition is_asig :: "'action signature => bool"
  where "is_asig(triple) 
    ((inputs(triple)  outputs(triple) = {})    
     (outputs(triple)  internals(triple) = {}) 
     (inputs(triple)  internals(triple) = {}))"

definition mk_ext_asig :: "'action signature  'action signature"
  where "mk_ext_asig(triple)  (inputs(triple), outputs(triple), {})"


lemmas asig_projections = asig_inputs_def asig_outputs_def asig_internals_def

lemma int_and_ext_is_act: "ainternals(S); aexternals(S)  aactions(S)"
  apply (simp add: externals_def actions_def)
  done

lemma ext_is_act: "aexternals(S)  aactions(S)"
  apply (simp add: externals_def actions_def)
  done

end