Theory Asig
section ‹Action signatures›
theory Asig
imports Main
begin
type_synonym 'a signature = "('a set × 'a set × 'a set)"
definition "inputs" :: "'action signature ⇒ 'action set"
where asig_inputs_def: "inputs ≡ fst"
definition "outputs" :: "'action signature ⇒ 'action set"
where asig_outputs_def: "outputs ≡ (fst ∘ snd)"
definition "internals" :: "'action signature ⇒ 'action set"
where asig_internals_def: "internals ≡ (snd ∘ snd)"
definition "actions" :: "'action signature ⇒ 'action set"
where actions_def: "actions(asig) ≡ (inputs(asig) ∪ outputs(asig) ∪ internals(asig))"
definition externals :: "'action signature ⇒ 'action set"
where externals_def: "externals(asig) ≡ (inputs(asig) ∪ outputs(asig))"
definition is_asig :: "'action signature => bool"
where "is_asig(triple) ≡
((inputs(triple) ∩ outputs(triple) = {}) ∧
(outputs(triple) ∩ internals(triple) = {}) ∧
(inputs(triple) ∩ internals(triple) = {}))"
definition mk_ext_asig :: "'action signature ⇒ 'action signature"
where "mk_ext_asig(triple) ≡ (inputs(triple), outputs(triple), {})"
lemmas asig_projections = asig_inputs_def asig_outputs_def asig_internals_def
lemma int_and_ext_is_act: "⟦a∉internals(S); a∉externals(S)⟧ ⟹ a∉actions(S)"
apply (simp add: externals_def actions_def)
done
lemma ext_is_act: "a∈externals(S) ⟹ a∈actions(S)"
apply (simp add: externals_def actions_def)
done
end