Theory Live_True

(* Author: Tobias Nipkow *)

subsection "True Liveness Analysis"

theory Live_True
imports "HOL-Library.While_Combinator" Vars Big_Step
begin

subsubsection "Analysis"

fun L :: "com  vname set  vname set" where
"L SKIP X = X" |
"L (x ::= a) X = (if x  X then vars a  (X - {x}) else X)" |
"L (c1;; c2) X = L c1 (L c2 X)" |
"L (IF b THEN c1 ELSE c2) X = vars b  L c1 X  L c2 X" |
"L (WHILE b DO c) X = lfp(λY. vars b  X  L c Y)"

lemma L_mono: "mono (L c)"
proof-
  have "X  Y  L c X  L c Y" for X Y
  proof(induction c arbitrary: X Y)
    case (While b c)
    show ?case
    proof(simp, rule lfp_mono)
      fix Z show "vars b  X  L c Z  vars b  Y  L c Z"
        using While by auto
    qed
  next
    case If thus ?case by(auto simp: subset_iff)
  qed auto
  thus ?thesis by(rule monoI)
qed

lemma mono_union_L:
  "mono (λY. X  L c Y)"
by (metis (no_types) L_mono mono_def order_eq_iff set_eq_subset sup_mono)

lemma L_While_unfold:
  "L (WHILE b DO c) X = vars b  X  L c (L (WHILE b DO c) X)"
by(metis lfp_unfold[OF mono_union_L] L.simps(5))

lemma L_While_pfp: "L c (L (WHILE b DO c) X)  L (WHILE b DO c) X"
using L_While_unfold by blast

lemma L_While_vars: "vars b  L (WHILE b DO c) X"
using L_While_unfold by blast

lemma L_While_X: "X  L (WHILE b DO c) X"
using L_While_unfold by blast

text‹Disable L WHILE› equation and reason only with L WHILE› constraints:›
declare L.simps(5)[simp del]


subsubsection "Correctness"

theorem L_correct:
  "(c,s)  s'   s = t on L c X 
   t'. (c,t)  t' & s' = t' on X"
proof (induction arbitrary: X t rule: big_step_induct)
  case Skip then show ?case by auto
next
  case Assign then show ?case
    by (auto simp: ball_Un)
next
  case (Seq c1 s1 s2 c2 s3 X t1)
  from Seq.IH(1) Seq.prems obtain t2 where
    t12: "(c1, t1)  t2" and s2t2: "s2 = t2 on L c2 X"
    by simp blast
  from Seq.IH(2)[OF s2t2] obtain t3 where
    t23: "(c2, t2)  t3" and s3t3: "s3 = t3 on X"
    by auto
  show ?case using t12 t23 s3t3 by auto
next
  case (IfTrue b s c1 s' c2)
  hence "s = t on vars b" and "s = t on L c1 X" by auto
  from  bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have "bval b t" by simp
  from IfTrue.IH[OF s = t on L c1 X] obtain t' where
    "(c1, t)  t'" "s' = t' on X" by auto
  thus ?case using bval b t by auto
next
  case (IfFalse b s c2 s' c1)
  hence "s = t on vars b" "s = t on L c2 X" by auto
  from  bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have "~bval b t" by simp
  from IfFalse.IH[OF s = t on L c2 X] obtain t' where
    "(c2, t)  t'" "s' = t' on X" by auto
  thus ?case using ~bval b t by auto
next
  case (WhileFalse b s c)
  hence "~ bval b t"
    by (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
  thus ?case using WhileFalse.prems L_While_X[of X b c] by auto
next
  case (WhileTrue b s1 c s2 s3 X t1)
  let ?w = "WHILE b DO c"
  from bval b s1 WhileTrue.prems have "bval b t1"
    by (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
  have "s1 = t1 on L c (L ?w X)" using  L_While_pfp WhileTrue.prems
    by (blast)
  from WhileTrue.IH(1)[OF this] obtain t2 where
    "(c, t1)  t2" "s2 = t2 on L ?w X" by auto
  from WhileTrue.IH(2)[OF this(2)] obtain t3 where "(?w,t2)  t3" "s3 = t3 on X"
    by auto
  with bval b t1 (c, t1)  t2 show ?case by auto
qed


subsubsection "Executability"

lemma L_subset_vars: "L c X  rvars c  X"
proof(induction c arbitrary: X)
  case (While b c)
  have "lfp(λY. vars b  X  L c Y)  vars b  rvars c  X"
    using While.IH[of "vars b  rvars c  X"]
    by (auto intro!: lfp_lowerbound)
  thus ?case by (simp add: L.simps(5))
qed auto

text‹Make constL executable by replacing constlfp with the constwhile combinator from theory theoryHOL-Library.While_Combinator. The constwhile
combinator obeys the recursion equation
@{thm[display] While_Combinator.while_unfold[no_vars]}
and is thus executable.›

lemma L_While: fixes b c X
assumes "finite X" defines "f == λY. vars b  X  L c Y"
shows "L (WHILE b DO c) X = while (λY. f Y  Y) f {}" (is "_ = ?r")
proof -
  let ?V = "vars b  rvars c  X"
  have "lfp f = ?r"
  proof(rule lfp_while[where C = "?V"])
    show "mono f" by(simp add: f_def mono_union_L)
  next
    fix Y show "Y  ?V  f Y  ?V"
      unfolding f_def using L_subset_vars[of c] by blast
  next
    show "finite ?V" using finite X by simp
  qed
  thus ?thesis by (simp add: f_def L.simps(5))
qed

lemma L_While_let: "finite X  L (WHILE b DO c) X =
  (let f = (λY. vars b  X  L c Y)
   in while (λY. f Y  Y) f {})"
by(simp add: L_While)

lemma L_While_set: "L (WHILE b DO c) (set xs) =
  (let f = (λY. vars b  set xs  L c Y)
   in while (λY. f Y  Y) f {})"
by(rule L_While_let, simp)

text‹Replace the equation for L (WHILE …)› by the executable @{thm[source] L_While_set}:›
lemmas [code] = L.simps(1-4) L_While_set
text‹Sorry, this syntax is odd.›

text‹A test:›
lemma "(let b = Less (N 0) (V ''y''); c = ''y'' ::= V ''x'';; ''x'' ::= V ''z''
  in L (WHILE b DO c) {''y''}) = {''x'', ''y'', ''z''}"
by eval


subsubsection "Limiting the number of iterations"

text‹The final parameter is the default value:›

fun iter :: "('a  'a)  nat  'a  'a  'a" where
"iter f 0 p d = d" |
"iter f (Suc n) p d = (if f p = p then p else iter f n (f p) d)"

text‹A version of constL with a bounded number of iterations (here: 2)
in the WHILE case:›

fun Lb :: "com  vname set  vname set" where
"Lb SKIP X = X" |
"Lb (x ::= a) X = (if x  X then X - {x}  vars a else X)" |
"Lb (c1;; c2) X = (Lb c1  Lb c2) X" |
"Lb (IF b THEN c1 ELSE c2) X = vars b  Lb c1 X  Lb c2 X" |
"Lb (WHILE b DO c) X = iter (λA. vars b  X  Lb c A) 2 {} (vars b  rvars c  X)"

textconstLb (and constiter) is not monotone!›
lemma "let w = WHILE Bc False DO (''x'' ::= V ''y'';; ''z'' ::= V ''x'')
  in ¬ (Lb w {''z''}  Lb w {''y'',''z''})"
by eval

lemma lfp_subset_iter:
  " mono f; !!X. f X  f' X; lfp f  D   lfp f  iter f' n A D"
proof(induction n arbitrary: A)
  case 0 thus ?case by simp
next
  case Suc thus ?case by simp (metis lfp_lowerbound)
qed

lemma "L c X  Lb c X"
proof(induction c arbitrary: X)
  case (While b c)
  let ?f  = "λA. vars b  X  L  c A"
  let ?fb = "λA. vars b  X  Lb c A"
  show ?case
  proof (simp add: L.simps(5), rule lfp_subset_iter[OF mono_union_L])
    show "!!X. ?f X  ?fb X" using While.IH by blast
    show "lfp ?f  vars b  rvars c  X"
      by (metis (full_types) L.simps(5) L_subset_vars rvars.simps(5))
  qed
next
  case Seq thus ?case by simp (metis (full_types) L_mono monoD subset_trans)
qed auto

end