Theory Homology_Groups
section‹Homology, II: Homology Groups›
theory Homology_Groups
imports Simplices "HOL-Algebra.Exact_Sequence"
begin
subsection‹Homology Groups›
text‹Now actually connect to group theory and set up homology groups. Note that we define homomogy
groups for all \emph{integers} @{term p}, since this seems to avoid some special-case reasoning,
though they are trivial for @{term"p < 0"}.›
definition chain_group :: "nat ⇒ 'a topology ⇒ 'a chain monoid"
where "chain_group p X ≡ free_Abelian_group (singular_simplex_set p X)"
lemma carrier_chain_group [simp]: "carrier(chain_group p X) = singular_chain_set p X"
by (auto simp: chain_group_def singular_chain_def free_Abelian_group_def)
lemma one_chain_group [simp]: "one(chain_group p X) = 0"
by (auto simp: chain_group_def free_Abelian_group_def)
lemma mult_chain_group [simp]: "monoid.mult(chain_group p X) = (+)"
by (auto simp: chain_group_def free_Abelian_group_def)
lemma m_inv_chain_group [simp]: "Poly_Mapping.keys a ⊆ singular_simplex_set p X ⟹ inv⇘chain_group p X⇙ a = -a"
unfolding chain_group_def by simp
lemma group_chain_group [simp]: "Group.group (chain_group p X)"
by (simp add: chain_group_def)
lemma abelian_chain_group: "comm_group(chain_group p X)"
by (simp add: free_Abelian_group_def group.group_comm_groupI [OF group_chain_group])
lemma subgroup_singular_relcycle:
"subgroup (singular_relcycle_set p X S) (chain_group p X)"
proof
show "x ⊗⇘chain_group p X⇙ y ∈ singular_relcycle_set p X S"
if "x ∈ singular_relcycle_set p X S" and "y ∈ singular_relcycle_set p X S" for x y
using that by (simp add: singular_relcycle_add)
next
show "inv⇘chain_group p X⇙ x ∈ singular_relcycle_set p X S"
if "x ∈ singular_relcycle_set p X S" for x
using that
by clarsimp (metis m_inv_chain_group singular_chain_def singular_relcycle singular_relcycle_minus)
qed (auto simp: singular_relcycle)
definition relcycle_group :: "nat ⇒ 'a topology ⇒ 'a set ⇒ ('a chain) monoid"
where "relcycle_group p X S ≡
subgroup_generated (chain_group p X) (Collect(singular_relcycle p X S))"
lemma carrier_relcycle_group [simp]:
"carrier (relcycle_group p X S) = singular_relcycle_set p X S"
proof -
have "carrier (chain_group p X) ∩ singular_relcycle_set p X S = singular_relcycle_set p X S"
using subgroup.subset subgroup_singular_relcycle by blast
moreover have "generate (chain_group p X) (singular_relcycle_set p X S) ⊆ singular_relcycle_set p X S"
by (simp add: group.generate_subgroup_incl group_chain_group subgroup_singular_relcycle)
ultimately show ?thesis
by (auto simp: relcycle_group_def subgroup_generated_def generate.incl)
qed
lemma one_relcycle_group [simp]: "one(relcycle_group p X S) = 0"
by (simp add: relcycle_group_def)
lemma mult_relcycle_group [simp]: "(⊗⇘relcycle_group p X S⇙) = (+)"
by (simp add: relcycle_group_def)
lemma abelian_relcycle_group [simp]:
"comm_group(relcycle_group p X S)"
unfolding relcycle_group_def
by (intro group.abelian_subgroup_generated group_chain_group) (auto simp: abelian_chain_group singular_relcycle)
lemma group_relcycle_group [simp]: "group(relcycle_group p X S)"
by (simp add: comm_group.axioms(2))
lemma relcycle_group_restrict [simp]:
"relcycle_group p X (topspace X ∩ S) = relcycle_group p X S"
by (metis relcycle_group_def singular_relcycle_restrict)
definition relative_homology_group :: "int ⇒ 'a topology ⇒ 'a set ⇒ ('a chain) set monoid"
where
"relative_homology_group p X S ≡
if p < 0 then singleton_group undefined else
(relcycle_group (nat p) X S) Mod (singular_relboundary_set (nat p) X S)"
abbreviation homology_group
where "homology_group p X ≡ relative_homology_group p X {}"
lemma relative_homology_group_restrict [simp]:
"relative_homology_group p X (topspace X ∩ S) = relative_homology_group p X S"
by (simp add: relative_homology_group_def)
lemma nontrivial_relative_homology_group:
fixes p::nat
shows "relative_homology_group p X S
= relcycle_group p X S Mod singular_relboundary_set p X S"
by (simp add: relative_homology_group_def)
lemma singular_relboundary_ss:
"singular_relboundary p X S x ⟹ Poly_Mapping.keys x ⊆ singular_simplex_set p X"
using singular_chain_def singular_relboundary_imp_chain by blast
lemma trivial_relative_homology_group [simp]:
"p < 0 ⟹ trivial_group(relative_homology_group p X S)"
by (simp add: relative_homology_group_def)
lemma subgroup_singular_relboundary:
"subgroup (singular_relboundary_set p X S) (chain_group p X)"
unfolding chain_group_def
proof unfold_locales
show "singular_relboundary_set p X S
⊆ carrier (free_Abelian_group (singular_simplex_set p X))"
using singular_chain_def singular_relboundary_imp_chain by fastforce
next
fix x
assume "x ∈ singular_relboundary_set p X S"
then show "inv⇘free_Abelian_group (singular_simplex_set p X)⇙ x
∈ singular_relboundary_set p X S"
by (simp add: singular_relboundary_ss singular_relboundary_minus)
qed (auto simp: free_Abelian_group_def singular_relboundary_add)
lemma subgroup_singular_relboundary_relcycle:
"subgroup (singular_relboundary_set p X S) (relcycle_group p X S)"
unfolding relcycle_group_def
by (simp add: Collect_mono group.subgroup_of_subgroup_generated singular_relboundary_imp_relcycle subgroup_singular_relboundary)
lemma normal_subgroup_singular_relboundary_relcycle:
"(singular_relboundary_set p X S) ⊲ (relcycle_group p X S)"
by (simp add: comm_group.normal_iff_subgroup subgroup_singular_relboundary_relcycle)
lemma group_relative_homology_group [simp]:
"group (relative_homology_group p X S)"
by (simp add: relative_homology_group_def normal.factorgroup_is_group
normal_subgroup_singular_relboundary_relcycle)
lemma right_coset_singular_relboundary:
"r_coset (relcycle_group p X S) (singular_relboundary_set p X S)
= (λa. {b. homologous_rel p X S a b})"
using singular_relboundary_minus
by (force simp: r_coset_def homologous_rel_def relcycle_group_def subgroup_generated_def)
lemma carrier_relative_homology_group:
"carrier(relative_homology_group (int p) X S)
= (homologous_rel_set p X S) ` singular_relcycle_set p X S"
by (auto simp: set_eq_iff image_iff relative_homology_group_def FactGroup_def RCOSETS_def right_coset_singular_relboundary)
lemma carrier_relative_homology_group_0:
"carrier(relative_homology_group 0 X S)
= (homologous_rel_set 0 X S) ` singular_relcycle_set 0 X S"
using carrier_relative_homology_group [of 0 X S] by simp
lemma one_relative_homology_group [simp]:
"one(relative_homology_group (int p) X S) = singular_relboundary_set p X S"
by (simp add: relative_homology_group_def FactGroup_def)
lemma mult_relative_homology_group:
"(⊗⇘relative_homology_group (int p) X S⇙) = (λR S. (⋃r∈R. ⋃s∈S. {r + s}))"
unfolding relcycle_group_def subgroup_generated_def chain_group_def free_Abelian_group_def set_mult_def relative_homology_group_def FactGroup_def
by force
lemma inv_relative_homology_group:
assumes "R ∈ carrier (relative_homology_group (int p) X S)"
shows "m_inv(relative_homology_group (int p) X S) R = uminus ` R"
proof (rule group.inv_equality [OF group_relative_homology_group _ assms])
obtain c where c: "R = homologous_rel_set p X S c" "singular_relcycle p X S c"
using assms by (auto simp: carrier_relative_homology_group)
have "singular_relboundary p X S (b - a)"
if "a ∈ R" and "b ∈ R" for a b
using c that
by clarify (metis homologous_rel_def homologous_rel_eq)
moreover
have "x ∈ (⋃x∈R. ⋃y∈R. {y - x})"
if "singular_relboundary p X S x" for x
using c
by simp (metis diff_eq_eq homologous_rel_def homologous_rel_refl homologous_rel_sym that)
ultimately
have "(⋃x∈R. ⋃xa∈R. {xa - x}) = singular_relboundary_set p X S"
by auto
then show "uminus ` R ⊗⇘relative_homology_group (int p) X S⇙ R =
𝟭⇘relative_homology_group (int p) X S⇙"
by (auto simp: carrier_relative_homology_group mult_relative_homology_group)
have "singular_relcycle p X S (-c)"
using c by (simp add: singular_relcycle_minus)
moreover have "homologous_rel p X S c x ⟹ homologous_rel p X S (-c) (- x)" for x
by (metis homologous_rel_def homologous_rel_sym minus_diff_eq minus_diff_minus)
moreover have "homologous_rel p X S (-c) x ⟹ x ∈ uminus ` homologous_rel_set p X S c" for x
by (clarsimp simp: image_iff) (metis add.inverse_inverse diff_0 homologous_rel_diff homologous_rel_refl)
ultimately show "uminus ` R ∈ carrier (relative_homology_group (int p) X S)"
using c by (auto simp: carrier_relative_homology_group)
qed
lemma homologous_rel_eq_relboundary:
"homologous_rel p X S c = singular_relboundary p X S
⟷ singular_relboundary p X S c" (is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
unfolding homologous_rel_def
by (metis diff_zero singular_relboundary_0)
next
assume R: ?rhs
show ?lhs
unfolding homologous_rel_def
using singular_relboundary_diff R by fastforce
qed
lemma homologous_rel_set_eq_relboundary:
"homologous_rel_set p X S c = singular_relboundary_set p X S ⟷ singular_relboundary p X S c"
by (auto simp flip: homologous_rel_eq_relboundary)
text‹Lift the boundary and induced maps to homology groups. We totalize both
quite aggressively to the appropriate group identity in all "undefined"
situations, which makes several of the properties cleaner and simpler.›
lemma homomorphism_chain_boundary:
"chain_boundary p ∈ hom (relcycle_group p X S) (relcycle_group(p - Suc 0) (subtopology X S) {})"
(is "?h ∈ hom ?G ?H")
proof (rule homI)
show "⋀x. x ∈ carrier ?G ⟹ ?h x ∈ carrier ?H"
by (auto simp: singular_relcycle_def mod_subset_def chain_boundary_boundary)
qed (simp add: relcycle_group_def subgroup_generated_def chain_boundary_add)
lemma hom_boundary1:
"∃d. ∀p X S.
d p X S ∈ hom (relative_homology_group (int p) X S)
(homology_group (int (p - Suc 0)) (subtopology X S))
∧ (∀c. singular_relcycle p X S c
⟶ d p X S (homologous_rel_set p X S c)
= homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c))"
(is "∃d. ∀p X S. ?Φ (d p X S) p X S")
proof ((subst choice_iff [symmetric])+, clarify)
fix p X and S :: "'a set"
define θ where "θ ≡ r_coset (relcycle_group(p - Suc 0) (subtopology X S) {})
(singular_relboundary_set (p - Suc 0) (subtopology X S) {}) ∘ chain_boundary p"
define H where "H ≡ relative_homology_group (int (p - Suc 0)) (subtopology X S) {}"
define J where "J ≡ relcycle_group (p - Suc 0) (subtopology X S) {}"
have θ: "θ ∈ hom (relcycle_group p X S) H"
unfolding θ_def
proof (rule hom_compose)
show "chain_boundary p ∈ hom (relcycle_group p X S) J"
by (simp add: J_def homomorphism_chain_boundary)
show "(#>⇘relcycle_group (p - Suc 0) (subtopology X S) {}⇙)
(singular_relboundary_set (p - Suc 0) (subtopology X S) {}) ∈ hom J H"
by (simp add: H_def J_def nontrivial_relative_homology_group
normal.r_coset_hom_Mod normal_subgroup_singular_relboundary_relcycle)
qed
have *: "singular_relboundary (p - Suc 0) (subtopology X S) {} (chain_boundary p c)"
if "singular_relboundary p X S c" for c
proof (cases "p=0")
case True
then show ?thesis
by (metis chain_boundary_def singular_relboundary_0)
next
case False
with that have "∃d. singular_chain p (subtopology X S) d ∧ chain_boundary p d = chain_boundary p c"
by (metis add.left_neutral chain_boundary_add chain_boundary_boundary_alt singular_relboundary)
with that False show ?thesis
by (auto simp: singular_boundary)
qed
have θ_eq: "θ x = θ y"
if x: "x ∈ singular_relcycle_set p X S" and y: "y ∈ singular_relcycle_set p X S"
and eq: "singular_relboundary_set p X S #>⇘relcycle_group p X S⇙ x
= singular_relboundary_set p X S #>⇘relcycle_group p X S⇙ y" for x y
proof -
have "singular_relboundary p X S (x-y)"
by (metis eq homologous_rel_def homologous_rel_eq mem_Collect_eq right_coset_singular_relboundary)
with * have "(singular_relboundary (p - Suc 0) (subtopology X S) {}) (chain_boundary p (x-y))"
by blast
then show ?thesis
unfolding θ_def comp_def
by (metis chain_boundary_diff homologous_rel_def homologous_rel_eq right_coset_singular_relboundary)
qed
obtain d
where "d ∈ hom ((relcycle_group p X S) Mod (singular_relboundary_set p X S)) H"
and d: "⋀u. u ∈ singular_relcycle_set p X S ⟹ d (homologous_rel_set p X S u) = θ u"
by (metis FactGroup_universal [OF θ normal_subgroup_singular_relboundary_relcycle θ_eq] right_coset_singular_relboundary carrier_relcycle_group)
then have "d ∈ hom (relative_homology_group p X S) H"
by (simp add: nontrivial_relative_homology_group)
then show "∃d. ?Φ d p X S"
by (force simp: H_def right_coset_singular_relboundary d θ_def)
qed
lemma hom_boundary2:
"∃d. (∀p X S.
(d p X S) ∈ hom (relative_homology_group p X S)
(homology_group (p-1) (subtopology X S)))
∧ (∀p X S c. singular_relcycle p X S c ∧ Suc 0 ≤ p
⟶ d p X S (homologous_rel_set p X S c)
= homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c))"
(is "∃d. ?Φ d")
proof -
have *: "∃f. Φ(λp. if p ≤ 0 then λq r t. undefined else f(nat p)) ⟹ ∃f. Φ f" for Φ
by blast
show ?thesis
apply (rule * [OF ex_forward [OF hom_boundary1]])
apply (simp add: not_le relative_homology_group_def nat_diff_distrib' int_eq_iff nat_diff_distrib flip: nat_1)
by (simp add: hom_def singleton_group_def)
qed
lemma hom_boundary3:
"∃d. ((∀p X S c. c ∉ carrier(relative_homology_group p X S)
⟶ d p X S c = one(homology_group (p-1) (subtopology X S))) ∧
(∀p X S.
d p X S ∈ hom (relative_homology_group p X S)
(homology_group (p-1) (subtopology X S))) ∧
(∀p X S c.
singular_relcycle p X S c ∧ 1 ≤ p
⟶ d p X S (homologous_rel_set p X S c)
= homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c)) ∧
(∀p X S. d p X S = d p X (topspace X ∩ S))) ∧
(∀p X S c. d p X S c ∈ carrier(homology_group (p-1) (subtopology X S))) ∧
(∀p. p ≤ 0 ⟶ d p = (λq r t. undefined))"
(is "∃x. ?P x ∧ ?Q x ∧ ?R x")
proof -
have "⋀x. ?Q x ⟹ ?R x"
by (erule all_forward) (force simp: relative_homology_group_def)
moreover have "∃x. ?P x ∧ ?Q x"
proof -
obtain d:: "[int, 'a topology, 'a set, ('a chain) set] ⇒ ('a chain) set"
where 1: "⋀p X S. d p X S ∈ hom (relative_homology_group p X S)
(homology_group (p-1) (subtopology X S))"
and 2: "⋀n X S c. singular_relcycle n X S c ∧ Suc 0 ≤ n
⟹ d n X S (homologous_rel_set n X S c)
= homologous_rel_set (n - Suc 0) (subtopology X S) {} (chain_boundary n c)"
using hom_boundary2 by blast
have 4: "c ∈ carrier (relative_homology_group p X S) ⟹
d p X (topspace X ∩ S) c ∈ carrier (relative_homology_group (p-1) (subtopology X S) {})"
for p X S c
using hom_carrier [OF 1 [of p X "topspace X ∩ S"]]
by (simp add: image_subset_iff subtopology_restrict)
show ?thesis
apply (rule_tac x="λp X S c.
if c ∈ carrier(relative_homology_group p X S)
then d p X (topspace X ∩ S) c
else one(homology_group (p-1) (subtopology X S))" in exI)
apply (simp add: Int_left_absorb subtopology_restrict carrier_relative_homology_group
group.is_monoid group.restrict_hom_iff 4 cong: if_cong)
by (metis "1" "2" homologous_rel_restrict relative_homology_group_restrict singular_relcycle_def subtopology_restrict)
qed
ultimately show ?thesis
by auto
qed
consts hom_boundary :: "[int,'a topology,'a set,'a chain set] ⇒ 'a chain set"
specification (hom_boundary)
hom_boundary:
"((∀p X S c. c ∉ carrier(relative_homology_group p X S)
⟶ hom_boundary p X S c = one(homology_group (p-1) (subtopology X (S::'a set)))) ∧
(∀p X S.
hom_boundary p X S ∈ hom (relative_homology_group p X S)
(homology_group (p-1) (subtopology X (S::'a set)))) ∧
(∀p X S c.
singular_relcycle p X S c ∧ 1 ≤ p
⟶ hom_boundary p X S (homologous_rel_set p X S c)
= homologous_rel_set (p - Suc 0) (subtopology X (S::'a set)) {} (chain_boundary p c)) ∧
(∀p X S. hom_boundary p X S = hom_boundary p X (topspace X ∩ (S::'a set)))) ∧
(∀p X S c. hom_boundary p X S c ∈ carrier(homology_group (p-1) (subtopology X (S::'a set)))) ∧
(∀p. p ≤ 0 ⟶ hom_boundary p = (λq r. λt::'a chain set. undefined))"
by (fact hom_boundary3)
lemma hom_boundary_default:
"c ∉ carrier(relative_homology_group p X S)
⟹ hom_boundary p X S c = one(homology_group (p-1) (subtopology X S))"
and hom_boundary_hom: "hom_boundary p X S ∈ hom (relative_homology_group p X S) (homology_group (p-1) (subtopology X S))"
and hom_boundary_restrict [simp]: "hom_boundary p X (topspace X ∩ S) = hom_boundary p X S"
and hom_boundary_carrier: "hom_boundary p X S c ∈ carrier(homology_group (p-1) (subtopology X S))"
and hom_boundary_trivial: "p ≤ 0 ⟹ hom_boundary p = (λq r t. undefined)"
by (metis hom_boundary)+
lemma hom_boundary_chain_boundary:
"⟦singular_relcycle p X S c; 1 ≤ p⟧
⟹ hom_boundary (int p) X S (homologous_rel_set p X S c) =
homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c)"
by (metis hom_boundary)+
lemma hom_chain_map:
"⟦continuous_map X Y f; f ` S ⊆ T⟧
⟹ (chain_map p f) ∈ hom (relcycle_group p X S) (relcycle_group p Y T)"
by (force simp: chain_map_add singular_relcycle_chain_map hom_def)
lemma hom_induced1:
"∃hom_relmap.
(∀p X S Y T f.
continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T
⟶ (hom_relmap p X S Y T f) ∈ hom (relative_homology_group (int p) X S)
(relative_homology_group (int p) Y T)) ∧
(∀p X S Y T f c.
continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T ∧
singular_relcycle p X S c
⟶ hom_relmap p X S Y T f (homologous_rel_set p X S c) =
homologous_rel_set p Y T (chain_map p f c))"
proof -
have "∃y. (y ∈ hom (relative_homology_group (int p) X S) (relative_homology_group (int p) Y T)) ∧
(∀c. singular_relcycle p X S c ⟶
y (homologous_rel_set p X S c) = homologous_rel_set p Y T (chain_map p f c))"
if contf: "continuous_map X Y f" and fim: "f ` (topspace X ∩ S) ⊆ T"
for p X S Y T and f :: "'a ⇒ 'b"
proof -
let ?f = "(#>⇘relcycle_group p Y T⇙) (singular_relboundary_set p Y T) ∘ chain_map p f"
let ?F = "λx. singular_relboundary_set p X S #>⇘relcycle_group p X S⇙ x"
have "chain_map p f ∈ hom (relcycle_group p X S) (relcycle_group p Y T)"
by (metis contf fim hom_chain_map relcycle_group_restrict)
then have 1: "?f ∈ hom (relcycle_group p X S) (relative_homology_group (int p) Y T)"
by (simp add: hom_compose normal.r_coset_hom_Mod normal_subgroup_singular_relboundary_relcycle relative_homology_group_def)
have 2: "singular_relboundary_set p X S ⊲ relcycle_group p X S"
using normal_subgroup_singular_relboundary_relcycle by blast
have 3: "?f x = ?f y"
if "singular_relcycle p X S x" "singular_relcycle p X S y" "?F x = ?F y" for x y
proof -
have "homologous_rel p X S x y"
by (metis (no_types) homologous_rel_set_eq right_coset_singular_relboundary that(3))
then have "singular_relboundary p Y T (chain_map p f (x - y))"
using singular_relboundary_chain_map [OF _ contf fim] by (simp add: homologous_rel_def)
then have "singular_relboundary p Y T (chain_map p f x - chain_map p f y)"
by (simp add: chain_map_diff)
with that
show ?thesis
by (metis comp_apply homologous_rel_def homologous_rel_set_eq right_coset_singular_relboundary)
qed
obtain g where "g ∈ hom (relcycle_group p X S Mod singular_relboundary_set p X S)
(relative_homology_group (int p) Y T)"
"⋀x. x ∈ singular_relcycle_set p X S ⟹ g (?F x) = ?f x"
using FactGroup_universal [OF 1 2 3, unfolded carrier_relcycle_group] by blast
then show ?thesis
by (force simp: right_coset_singular_relboundary nontrivial_relative_homology_group)
qed
then show ?thesis
apply (simp flip: all_conj_distrib)
apply ((subst choice_iff [symmetric])+)
apply metis
done
qed
lemma hom_induced2:
"∃hom_relmap.
(∀p X S Y T f.
continuous_map X Y f ∧
f ` (topspace X ∩ S) ⊆ T
⟶ (hom_relmap p X S Y T f) ∈ hom (relative_homology_group p X S)
(relative_homology_group p Y T)) ∧
(∀p X S Y T f c.
continuous_map X Y f ∧
f ` (topspace X ∩ S) ⊆ T ∧
singular_relcycle p X S c
⟶ hom_relmap p X S Y T f (homologous_rel_set p X S c) =
homologous_rel_set p Y T (chain_map p f c)) ∧
(∀p. p < 0 ⟶ hom_relmap p = (λX S Y T f c. undefined))"
(is "∃d. ?Φ d")
proof -
have *: "∃f. Φ(λp. if p < 0 then λX S Y T f c. undefined else f(nat p)) ⟹ ∃f. Φ f" for Φ
by blast
show ?thesis
apply (rule * [OF ex_forward [OF hom_induced1]])
apply (simp add: not_le relative_homology_group_def nat_diff_distrib' int_eq_iff nat_diff_distrib flip: nat_1)
done
qed
lemma hom_induced3:
"∃hom_relmap.
((∀p X S Y T f c.
~(continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T ∧
c ∈ carrier(relative_homology_group p X S))
⟶ hom_relmap p X S Y T f c = one(relative_homology_group p Y T)) ∧
(∀p X S Y T f.
hom_relmap p X S Y T f ∈ hom (relative_homology_group p X S) (relative_homology_group p Y T)) ∧
(∀p X S Y T f c.
continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T ∧ singular_relcycle p X S c
⟶ hom_relmap p X S Y T f (homologous_rel_set p X S c) =
homologous_rel_set p Y T (chain_map p f c)) ∧
(∀p X S Y T.
hom_relmap p X S Y T =
hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T))) ∧
(∀p X S Y f T c.
hom_relmap p X S Y T f c ∈ carrier(relative_homology_group p Y T)) ∧
(∀p. p < 0 ⟶ hom_relmap p = (λX S Y T f c. undefined))"
(is "∃x. ?P x ∧ ?Q x ∧ ?R x")
proof -
have "⋀x. ?Q x ⟹ ?R x"
by (erule all_forward) (fastforce simp: relative_homology_group_def)
moreover have "∃x. ?P x ∧ ?Q x"
proof -
obtain hom_relmap:: "[int,'a topology,'a set,'b topology,'b set,'a ⇒ 'b,('a chain) set] ⇒ ('b chain) set"
where 1: "⋀p X S Y T f. ⟦continuous_map X Y f; f ` (topspace X ∩ S) ⊆ T⟧ ⟹
hom_relmap p X S Y T f
∈ hom (relative_homology_group p X S) (relative_homology_group p Y T)"
and 2: "⋀p X S Y T f c.
⟦continuous_map X Y f; f ` (topspace X ∩ S) ⊆ T; singular_relcycle p X S c⟧
⟹
hom_relmap (int p) X S Y T f (homologous_rel_set p X S c) =
homologous_rel_set p Y T (chain_map p f c)"
and 3: "(∀p. p < 0 ⟶ hom_relmap p = (λX S Y T f c. undefined))"
using hom_induced2 [where ?'a='a and ?'b='b]
by (metis (mono_tags, lifting))
have 4: "⟦continuous_map X Y f; f ` (topspace X ∩ S) ⊆ T; c ∈ carrier (relative_homology_group p X S)⟧ ⟹
hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T) f c
∈ carrier (relative_homology_group p Y T)"
for p X S Y f T c
using hom_carrier [OF 1 [of X Y f "topspace X ∩ S" "topspace Y ∩ T" p]]
continuous_map_image_subset_topspace by fastforce
have inhom: "(λc. if continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T ∧
c ∈ carrier (relative_homology_group p X S)
then hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T) f c
else 𝟭⇘relative_homology_group p Y T⇙)
∈ hom (relative_homology_group p X S) (relative_homology_group p Y T)" (is "?h ∈ hom ?GX ?GY")
for p X S Y T f
proof (rule homI)
show "⋀x. x ∈ carrier ?GX ⟹ ?h x ∈ carrier ?GY"
by (auto simp: 4 group.is_monoid)
show "?h (x ⊗⇘?GX⇙ y) = ?h x ⊗⇘?GY⇙?h y" if "x ∈ carrier ?GX" "y ∈ carrier ?GX" for x y
proof (cases "p < 0")
case True
with that show ?thesis
by (simp add: relative_homology_group_def singleton_group_def 3)
next
case False
show ?thesis
proof (cases "continuous_map X Y f")
case True
then have "f ` (topspace X ∩ S) ⊆ topspace Y"
using continuous_map_image_subset_topspace by blast
then show ?thesis
using True False that
using 1 [of X Y f "topspace X ∩ S" "topspace Y ∩ T" p]
by (simp add: 4 continuous_map_image_subset_topspace hom_mult not_less group.is_monoid monoid.m_closed Int_left_absorb)
qed (simp add: group.is_monoid)
qed
qed
have hrel: "⟦continuous_map X Y f; f ` (topspace X ∩ S) ⊆ T; singular_relcycle p X S c⟧
⟹ hom_relmap (int p) X (topspace X ∩ S) Y (topspace Y ∩ T)
f (homologous_rel_set p X S c) = homologous_rel_set p Y T (chain_map p f c)"
for p X S Y T f c
using 2 [of X Y f "topspace X ∩ S" "topspace Y ∩ T" p c]
continuous_map_image_subset_topspace by fastforce
show ?thesis
apply (rule_tac x="λp X S Y T f c.
if continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T ∧
c ∈ carrier(relative_homology_group p X S)
then hom_relmap p X (topspace X ∩ S) Y (topspace Y ∩ T) f c
else one(relative_homology_group p Y T)" in exI)
apply (simp add: Int_left_absorb subtopology_restrict carrier_relative_homology_group
group.is_monoid group.restrict_hom_iff 4 inhom hrel cong: if_cong)
apply (force simp: continuous_map_def intro!: ext)
done
qed
ultimately show ?thesis
by auto
qed
consts hom_induced:: "[int,'a topology,'a set,'b topology,'b set,'a ⇒ 'b,('a chain) set] ⇒ ('b chain) set"
specification (hom_induced)
hom_induced:
"((∀p X S Y T f c.
~(continuous_map X Y f ∧
f ` (topspace X ∩ S) ⊆ T ∧
c ∈ carrier(relative_homology_group p X S))
⟶ hom_induced p X (S::'a set) Y (T::'b set) f c =
one(relative_homology_group p Y T)) ∧
(∀p X S Y T f.
(hom_induced p X (S::'a set) Y (T::'b set) f) ∈ hom (relative_homology_group p X S)
(relative_homology_group p Y T)) ∧
(∀p X S Y T f c.
continuous_map X Y f ∧
f ` (topspace X ∩ S) ⊆ T ∧
singular_relcycle p X S c
⟶ hom_induced p X (S::'a set) Y (T::'b set) f (homologous_rel_set p X S c) =
homologous_rel_set p Y T (chain_map p f c)) ∧
(∀p X S Y T.
hom_induced p X (S::'a set) Y (T::'b set) =
hom_induced p X (topspace X ∩ S) Y (topspace Y ∩ T))) ∧
(∀p X S Y f T c.
hom_induced p X (S::'a set) Y (T::'b set) f c ∈
carrier(relative_homology_group p Y T)) ∧
(∀p. p < 0 ⟶ hom_induced p = (λX S Y T. λf::'a⇒'b. λc. undefined))"
by (fact hom_induced3)
lemma hom_induced_default:
"~(continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T ∧ c ∈ carrier(relative_homology_group p X S))
⟹ hom_induced p X S Y T f c = one(relative_homology_group p Y T)"
and hom_induced_hom:
"hom_induced p X S Y T f ∈ hom (relative_homology_group p X S) (relative_homology_group p Y T)"
and hom_induced_restrict [simp]:
"hom_induced p X (topspace X ∩ S) Y (topspace Y ∩ T) = hom_induced p X S Y T"
and hom_induced_carrier:
"hom_induced p X S Y T f c ∈ carrier(relative_homology_group p Y T)"
and hom_induced_trivial: "p < 0 ⟹ hom_induced p = (λX S Y T f c. undefined)"
by (metis hom_induced)+
lemma hom_induced_chain_map_gen:
"⟦continuous_map X Y f; f ` (topspace X ∩ S) ⊆ T; singular_relcycle p X S c⟧
⟹ hom_induced p X S Y T f (homologous_rel_set p X S c) = homologous_rel_set p Y T (chain_map p f c)"
by (metis hom_induced)
lemma hom_induced_chain_map:
"⟦continuous_map X Y f; f ` S ⊆ T; singular_relcycle p X S c⟧
⟹ hom_induced p X S Y T f (homologous_rel_set p X S c)
= homologous_rel_set p Y T (chain_map p f c)"
by (meson Int_lower2 hom_induced image_subsetI image_subset_iff subset_iff)
lemma hom_induced_eq:
assumes "⋀x. x ∈ topspace X ⟹ f x = g x"
shows "hom_induced p X S Y T f = hom_induced p X S Y T g"
proof -
consider "p < 0" | n where "p = int n"
by (metis int_nat_eq not_less)
then show ?thesis
proof cases
case 1
then show ?thesis
by (simp add: hom_induced_trivial)
next
case 2
have "hom_induced n X S Y T f C = hom_induced n X S Y T g C" for C
proof -
have "continuous_map X Y f ∧ f ` (topspace X ∩ S) ⊆ T ∧ C ∈ carrier (relative_homology_group n X S)
⟷ continuous_map X Y g ∧ g ` (topspace X ∩ S) ⊆ T ∧ C ∈ carrier (relative_homology_group n X S)"
(is "?P = ?Q")
by (metis IntD1 assms continuous_map_eq image_cong)
then consider "¬ ?P ∧ ¬ ?Q" | "?P ∧ ?Q"
by blast
then show ?thesis
proof cases
case 1
then show ?thesis
by (simp add: hom_induced_default)
next
case 2
have "homologous_rel_set n Y T (chain_map n f c) = homologous_rel_set n Y T (chain_map n g c)"
if "continuous_map X Y f" "f ` (topspace X ∩ S) ⊆ T"
"continuous_map X Y g" "g ` (topspace X ∩ S) ⊆ T"
"C = homologous_rel_set n X S c" "singular_relcycle n X S c"
for c
proof -
have "chain_map n f c = chain_map n g c"
using assms chain_map_eq singular_relcycle that by blast
then show ?thesis
by simp
qed
with 2 show ?thesis
by (auto simp: relative_homology_group_def carrier_FactGroup
right_coset_singular_relboundary hom_induced_chain_map_gen)
qed
qed
with 2 show ?thesis
by auto
qed
qed
subsection‹Towards the Eilenberg-Steenrod axioms›
text‹First prove we get functors into abelian groups with the boundary map
being a natural transformation between them, and prove Eilenberg-Steenrod
axioms (we also prove additivity a bit later on if one counts that). ›
lemma abelian_relative_homology_group [simp]:
"comm_group(relative_homology_group p X S)"
by (simp add: comm_group.abelian_FactGroup relative_homology_group_def subgroup_singular_relboundary_relcycle)
lemma abelian_homology_group: "comm_group(homology_group p X)"
by simp
lemma hom_induced_id_gen:
assumes contf: "continuous_map X X f" and feq: "⋀x. x ∈ topspace X ⟹ f x = x"
and c: "c ∈ carrier (relative_homology_group p X S)"
shows "hom_induced p X S X S f c = c"
proof -
consider "p < 0" | n where "p = int n"
by (metis int_nat_eq not_less)
then show ?thesis
proof cases
case 1
with c show ?thesis
by (simp add: hom_induced_trivial relative_homology_group_def)
next
case 2
have cm: "chain_map n f d = d" if "singular_relcycle n X S d" for d
using that assms by (auto simp: chain_map_id_gen singular_relcycle)
have "f ` (topspace X ∩ S) ⊆ S"
using feq by auto
with 2 c show ?thesis
by (auto simp: nontrivial_relative_homology_group carrier_FactGroup
cm right_coset_singular_relboundary hom_induced_chain_map_gen assms)
qed
qed
lemma hom_induced_id:
"c ∈ carrier (relative_homology_group p X S) ⟹ hom_induced p X S X S id c = c"
by (rule hom_induced_id_gen) auto
lemma hom_induced_compose:
assumes "continuous_map X Y f" "f ` S ⊆ T" "continuous_map Y Z g" "g ` T ⊆ U"
shows "hom_induced p X S Z U (g ∘ f) = hom_induced p Y T Z U g ∘ hom_induced p X S Y T f"
proof -
consider (neg) "p < 0" | (int) n where "p = int n"
by (metis int_nat_eq not_less)
then show ?thesis
proof cases
case int
have gf: "continuous_map X Z (g ∘ f)"
using assms continuous_map_compose by fastforce
have gfim: "(g ∘ f) ` S ⊆ U"
unfolding o_def using assms by blast
have sr: "⋀a. singular_relcycle n X S a ⟹ singular_relcycle n Y T (chain_map n f a)"
by (simp add: assms singular_relcycle_chain_map)
show ?thesis
proof
fix c
show "hom_induced p X S Z U (g ∘ f) c = (hom_induced p Y T Z U g ∘ hom_induced p X S Y T f) c"
proof (cases "c ∈ carrier(relative_homology_group p X S)")
case True
with gfim show ?thesis
unfolding int
by (auto simp: carrier_relative_homology_group gf gfim assms sr chain_map_compose hom_induced_chain_map)
next
case False
then show ?thesis
by (simp add: hom_induced_default hom_one [OF hom_induced_hom])
qed
qed
qed (force simp: hom_induced_trivial)
qed
lemma hom_induced_compose':
assumes "continuous_map X Y f" "f ` S ⊆ T" "continuous_map Y Z g" "g ` T ⊆ U"
shows "hom_induced p Y T Z U g (hom_induced p X S Y T f x) = hom_induced p X S Z U (g ∘ f) x"
using hom_induced_compose [OF assms] by simp
lemma naturality_hom_induced:
assumes "continuous_map X Y f" "f ` S ⊆ T"
shows "hom_boundary q Y T ∘ hom_induced q X S Y T f
= hom_induced (q - 1) (subtopology X S) {} (subtopology Y T) {} f ∘ hom_boundary q X S"
proof (cases "q ≤ 0")
case False
then obtain p where p1: "p ≥ Suc 0" and q: "q = int p"
using zero_le_imp_eq_int by force
show ?thesis
proof
fix c
show "(hom_boundary q Y T ∘ hom_induced q X S Y T f) c =
(hom_induced (q - 1) (subtopology X S) {} (subtopology Y T) {} f ∘ hom_boundary q X S) c"
proof (cases "c ∈ carrier(relative_homology_group p X S)")
case True
then obtain a where ceq: "c = homologous_rel_set p X S a" and a: "singular_relcycle p X S a"
by (force simp: carrier_relative_homology_group)
then have sr: "singular_relcycle p Y T (chain_map p f a)"
using assms singular_relcycle_chain_map by fastforce
then have sb: "singular_relcycle (p - Suc 0) (subtopology X S) {} (chain_boundary p a)"
by (metis One_nat_def a chain_boundary_boundary singular_chain_0 singular_relcycle)
have p1_eq: "int p - 1 = int (p - Suc 0)"
using p1 by auto
have cbm: "(chain_boundary p (chain_map p f a))
= (chain_map (p - Suc 0) f (chain_boundary p a))"
using a chain_boundary_chain_map singular_relcycle by blast
have contf: "continuous_map (subtopology X S) (subtopology Y T) f"
using assms
by (auto simp: continuous_map_in_subtopology topspace_subtopology
continuous_map_from_subtopology)
show ?thesis
unfolding q using assms p1 a
by (simp add: cbm ceq contf hom_boundary_chain_boundary hom_induced_chain_map p1_eq sb sr)
next
case False
with assms show ?thesis
unfolding q o_def using assms
apply (simp add: hom_induced_default hom_boundary_default)
by (metis group_relative_homology_group hom_boundary hom_induced hom_one one_relative_homology_group)
qed
qed
qed (force simp: hom_induced_trivial hom_boundary_trivial)
lemma homology_exactness_axiom_1:
"exact_seq ([homology_group (p-1) (subtopology X S), relative_homology_group p X S, homology_group p X],
[hom_boundary p X S,hom_induced p X {} X S id])"
proof -
consider (neg) "p < 0" | (int) n where "p = int n"
by (metis int_nat_eq not_less)
then have "(hom_induced p X {} X S id) ` carrier (homology_group p X)
= kernel (relative_homology_group p X S) (homology_group (p-1) (subtopology X S))
(hom_boundary p X S)"
proof cases
case neg
then show ?thesis
unfolding kernel_def singleton_group_def relative_homology_group_def
by (auto simp: hom_induced_trivial hom_boundary_trivial)
next
case int
have "hom_induced (int m) X {} X S id ` carrier (relative_homology_group (int m) X {})
= carrier (relative_homology_group (int m) X S) ∩
{c. hom_boundary (int m) X S c = 𝟭⇘relative_homology_group (int m - 1) (subtopology X S) {}⇙}" for m
proof (cases m)
case 0
have "hom_induced 0 X {} X S id ` carrier (relative_homology_group 0 X {})
= carrier (relative_homology_group 0 X S)" (is "?lhs = ?rhs")
proof
show "?lhs ⊆ ?rhs"
using hom_induced_hom [of 0 X "{}" X S id]
by (simp add: hom_induced_hom hom_carrier)
show "?rhs ⊆ ?lhs"
apply (clarsimp simp add: image_iff carrier_relative_homology_group [of 0, simplified] singular_relcycle)
apply (force simp: chain_map_id_gen chain_boundary_def singular_relcycle
hom_induced_chain_map [of concl: 0, simplified])
done
qed
with 0 show ?thesis
by (simp add: hom_boundary_trivial relative_homology_group_def [of "-1"] singleton_group_def)
next
case (Suc n)
have "(hom_induced (int (Suc n)) X {} X S id ∘
homologous_rel_set (Suc n) X {}) ` singular_relcycle_set (Suc n) X {}
= homologous_rel_set (Suc n) X S `
(singular_relcycle_set (Suc n) X S ∩
{c. hom_boundary (int (Suc n)) X S (homologous_rel_set (Suc n) X S c)
= singular_relboundary_set n (subtopology X S) {}})"
(is "?lhs = ?rhs")
proof -
have 1: "(⋀x. x ∈ A ⟹ x ∈ B ⟷ x ∈ C) ⟹ f ` (A ∩ B) = f ` (A ∩ C)" for f A B C
by blast
have 2: "⟦⋀x. x ∈ A ⟹ ∃y. y ∈ B ∧ f x = f y; ⋀x. x ∈ B ⟹ ∃y. y ∈ A ∧ f x = f y⟧
⟹ f ` A = f ` B" for f A B
by blast
have "?lhs = homologous_rel_set (Suc n) X S ` singular_relcycle_set (Suc n) X {}"
using hom_induced_chain_map chain_map_ident [of _ X] singular_relcycle
by (smt (verit) bot.extremum comp_apply continuous_map_id image_cong image_empty mem_Collect_eq)
also have "… = homologous_rel_set (Suc n) X S `
(singular_relcycle_set (Suc n) X S ∩
{c. singular_relboundary n (subtopology X S) {} (chain_boundary (Suc n) c)})"
proof (rule 2)
fix c
assume "c ∈ singular_relcycle_set (Suc n) X {}"
then show "∃y. y ∈ singular_relcycle_set (Suc n) X S ∩
{c. singular_relboundary n (subtopology X S) {} (chain_boundary (Suc n) c)} ∧
homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n) X S y"
using singular_cycle singular_relcycle by (fastforce simp: singular_boundary)
next
fix c
assume c: "c ∈ singular_relcycle_set (Suc n) X S ∩
{c. singular_relboundary n (subtopology X S) {} (chain_boundary (Suc n) c)}"
then obtain d where d: "singular_chain (Suc n) (subtopology X S) d"
"chain_boundary (Suc n) d = chain_boundary (Suc n) c"
by (auto simp: singular_boundary)
with c have "c - d ∈ singular_relcycle_set (Suc n) X {}"
by (auto simp: singular_cycle chain_boundary_diff singular_chain_subtopology singular_relcycle singular_chain_diff)
moreover have "homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n) X S (c - d)"
proof (simp add: homologous_rel_set_eq)
show "homologous_rel (Suc n) X S c (c - d)"
using d by (simp add: homologous_rel_def singular_chain_imp_relboundary)
qed
ultimately show "∃y. y ∈ singular_relcycle_set (Suc n) X {} ∧
homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n) X S y"
by blast
qed
also have "… = ?rhs"
by (rule 1) (simp add: hom_boundary_chain_boundary homologous_rel_set_eq_relboundary del: of_nat_Suc)
finally show "?lhs = ?rhs" .
qed
with Suc show ?thesis
unfolding carrier_relative_homology_group image_comp id_def by auto
qed
then show ?thesis
by (auto simp: kernel_def int)
qed
then show ?thesis
using hom_boundary_hom hom_induced_hom
by (force simp: group_hom_def group_hom_axioms_def)
qed
lemma homology_exactness_axiom_2:
"exact_seq ([homology_group (p-1) X, homology_group (p-1) (subtopology X S), relative_homology_group p X S],
[hom_induced (p-1) (subtopology X S) {} X {} id, hom_boundary p X S])"
proof -
consider (neg) "p ≤ 0" | (int) n where "p = int (Suc n)"
by (metis linear not0_implies_Suc of_nat_0 zero_le_imp_eq_int)
then have "kernel (relative_homology_group (p-1) (subtopology X S) {})
(relative_homology_group (p-1) X {})
(hom_induced (p-1) (subtopology X S) {} X {} id)
= hom_boundary p X S ` carrier (relative_homology_group p X S)"
proof cases
case neg
obtain x where "x ∈ carrier (relative_homology_group p X S)"
using group_relative_homology_group group.is_monoid by blast
with neg show ?thesis
unfolding kernel_def singleton_group_def relative_homology_group_def
by (force simp: hom_induced_trivial hom_boundary_trivial)
next
case int
have "hom_boundary (int (Suc n)) X S ` carrier (relative_homology_group (int (Suc n)) X S)
= carrier (relative_homology_group n (subtopology X S) {}) ∩
{c. hom_induced n (subtopology X S) {} X {} id c =
𝟭⇘relative_homology_group n X {}⇙}"
(is "?lhs = ?rhs")
proof -
have 1: "(⋀x. x ∈ A ⟹ x ∈ B ⟷ x ∈ C) ⟹ f ` (A ∩ B) = f ` (A ∩ C)" for f A B C
by blast
have 2: "(⋀x. x ∈ A ⟹ x ∈ B ⟷ x ∈ f -` C) ⟹ f ` (A ∩ B) = f ` A ∩ C" for f A B C
by blast
have "?lhs = homologous_rel_set n (subtopology X S) {}
` (chain_boundary (Suc n) ` singular_relcycle_set (Suc n) X S)"
unfolding carrier_relative_homology_group image_comp
by (rule image_cong [OF refl]) (simp add: o_def hom_boundary_chain_boundary del: of_nat_Suc)
also have "… = homologous_rel_set n (subtopology X S) {} `
(singular_relcycle_set n (subtopology X S) {} ∩ singular_relboundary_set n X {})"
by (force simp: singular_relcycle singular_boundary chain_boundary_boundary_alt)
also have "… = ?rhs"
unfolding carrier_relative_homology_group vimage_def
by (intro 2) (auto simp: hom_induced_chain_map chain_map_ident homologous_rel_set_eq_relboundary singular_relcycle)
finally show ?thesis .
qed
then show ?thesis
by (auto simp: kernel_def int)
qed
then show ?thesis
using hom_boundary_hom hom_induced_hom
by (force simp: group_hom_def group_hom_axioms_def)
qed
lemma homology_exactness_axiom_3:
"exact_seq ([relative_homology_group p X S, homology_group p X, homology_group p (subtopology X S)],
[hom_induced p X {} X S id, hom_induced p (subtopology X S) {} X {} id])"
proof (cases "p < 0")
case True
then show ?thesis
unfolding relative_homology_group_def
by (simp add: group_hom.kernel_to_trivial_group group_hom_axioms_def group_hom_def hom_induced_trivial)
next
case False
then obtain n where peq: "p = int n"
by (metis int_ops(1) linorder_neqE_linordered_idom pos_int_cases)
have "hom_induced n (subtopology X S) {} X {} id `
(homologous_rel_set n (subtopology X S) {} `
singular_relcycle_set n (subtopology X S) {})
= {c ∈ homologous_rel_set n X {} ` singular_relcycle_set n X {}.
hom_induced n X {} X S id c = singular_relboundary_set n X S}"
(is "?lhs = ?rhs")
proof -
have 2: "⟦⋀x. x ∈ A ⟹ ∃y. y ∈ B ∧ f x = f y; ⋀x. x ∈ B ⟹ ∃y. y ∈ A ∧ f x = f y⟧
⟹ f ` A = f ` B" for f A B
by blast
have "?lhs = homologous_rel_set n X {} ` (singular_relcycle_set n (subtopology X S) {})"
by (smt (verit) chain_map_ident continuous_map_id_subt empty_subsetI hom_induced_chain_map image_cong image_empty image_image mem_Collect_eq singular_relcycle)
also have "… = homologous_rel_set n X {} ` (singular_relcycle_set n X {} ∩ singular_relboundary_set n X S)"
proof (rule 2)
fix c
assume "c ∈ singular_relcycle_set n (subtopology X S) {}"
then show "∃y. y ∈ singular_relcycle_set n X {} ∩ singular_relboundary_set n X S ∧
homologous_rel_set n X {} c = homologous_rel_set n X {} y"
using singular_chain_imp_relboundary singular_cycle singular_relboundary_imp_chain singular_relcycle by fastforce
next
fix c
assume "c ∈ singular_relcycle_set n X {} ∩ singular_relboundary_set n X S"
then obtain d e where c: "singular_relcycle n X {} c" "singular_relboundary n X S c"
and d: "singular_chain n (subtopology X S) d"
and e: "singular_chain (Suc n) X e" "chain_boundary (Suc n) e = c + d"
using singular_relboundary_alt by blast
then have "chain_boundary n (c + d) = 0"
using chain_boundary_boundary_alt by fastforce
then have "chain_boundary n c + chain_boundary n d = 0"
by (metis chain_boundary_add)
with c have "singular_relcycle n (subtopology X S) {} (- d)"
by (metis (no_types) d eq_add_iff singular_cycle singular_relcycle_minus)
moreover have "homologous_rel n X {} c (- d)"
using c
by (metis diff_minus_eq_add e homologous_rel_def singular_boundary)
ultimately
show "∃y. y ∈ singular_relcycle_set n (subtopology X S) {} ∧
homologous_rel_set n X {} c = homologous_rel_set n X {} y"
by (force simp: homologous_rel_set_eq)
qed
also have "… = homologous_rel_set n X {} `
(singular_relcycle_set n X {} ∩ homologous_rel_set n X {} -` {x. hom_induced n X {} X S id x = singular_relboundary_set n X S})"
by (rule 2) (auto simp: hom_induced_chain_map homologous_rel_set_eq_relboundary chain_map_ident [of _ X] singular_cycle cong: conj_cong)
also have "… = ?rhs"
by blast
finally show ?thesis .
qed
then have "kernel (relative_homology_group p X {}) (relative_homology_group p X S) (hom_induced p X {} X S id)
= hom_induced p (subtopology X S) {} X {} id ` carrier (relative_homology_group p (subtopology X S) {})"
by (simp add: kernel_def carrier_relative_homology_group peq)
then show ?thesis
by (simp add: not_less group_hom_def group_hom_axioms_def hom_induced_hom)
qed
lemma homology_dimension_axiom:
assumes X: "topspace X = {a}" and "p ≠ 0"
shows "trivial_group(homology_group p X)"
proof (cases "p < 0")
case True
then show ?thesis
by simp
next
case False
then obtain n where peq: "p = int n" "n > 0"
by (metis assms(2) neq0_conv nonneg_int_cases not_less of_nat_0)
have "homologous_rel_set n X {} ` singular_relcycle_set n X {} = {singular_relcycle_set n X {}}"
(is "?lhs = ?rhs")
proof
show "?lhs ⊆ ?rhs"
using peq assms
by (auto simp: image_subset_iff homologous_rel_set_eq_relboundary simp flip: singular_boundary_set_eq_cycle_singleton)
have "singular_relboundary n X {} 0"
by simp
with peq assms
show "?rhs ⊆ ?lhs"
by (auto simp: image_iff simp flip: homologous_rel_eq_relboundary singular_boundary_set_eq_cycle_singleton)
qed
with peq assms show ?thesis
unfolding trivial_group_def
by (simp add: carrier_relative_homology_group singular_boundary_set_eq_cycle_singleton [OF X])
qed
proposition homology_homotopy_axiom:
assumes "homotopic_with (λh. h ` S ⊆ T) X Y f g"
shows "hom_induced p X S Y T f = hom_induced p X S Y T g"
proof (cases "p < 0")
case True
then show ?thesis
by (simp add: hom_induced_trivial)
next
case False
then obtain n where peq: "p = int n"
by (metis int_nat_eq not_le)
have cont: "continuous_map X Y f" "continuous_map X Y g"
using assms homotopic_with_imp_continuous_maps by blast+
have im: "f ` (topspace X ∩ S) ⊆ T" "g ` (topspace X ∩ S) ⊆ T"
using homotopic_with_imp_property assms by blast+
show ?thesis
proof
fix c show "hom_induced p X S Y T f c = hom_induced p X S Y T g c"
proof (cases "c ∈ carrier(relative_homology_group p X S)")
case True
then obtain a where a: "c = homologous_rel_set n X S a" "singular_relcycle n X S a"
unfolding carrier_relative_homology_group peq by auto
with assms homotopic_imp_homologous_rel_chain_maps show ?thesis
by (force simp add: peq hom_induced_chain_map_gen cont im homologous_rel_set_eq)
qed (simp add: hom_induced_default)
qed
qed
proposition homology_excision_axiom:
assumes "X closure_of U ⊆ X interior_of T" "T ⊆ S"
shows
"hom_induced p (subtopology X (S - U)) (T - U) (subtopology X S) T id
∈ iso (relative_homology_group p (subtopology X (S - U)) (T - U))
(relative_homology_group p (subtopology X S) T)"
proof (cases "p < 0")
case True
then show ?thesis
unfolding iso_def bij_betw_def relative_homology_group_def by (simp add: hom_induced_trivial)
next
case False
then obtain n where peq: "p = int n"
by (metis int_nat_eq not_le)
have cont: "continuous_map (subtopology X (S - U)) (subtopology X S) id"
by (simp add: closure_of_subtopology_mono continuous_map_eq_image_closure_subset)
have TU: "topspace X ∩ (S - U) ∩ (T - U) ⊆ T"
by auto
show ?thesis
proof (simp add: iso_def peq carrier_relative_homology_group bij_betw_def hom_induced_hom, intro conjI)
show "inj_on (hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id)
(homologous_rel_set n (subtopology X (S - U)) (T - U) `
singular_relcycle_set n (subtopology X (S - U)) (T - U))"
unfolding inj_on_def
proof (clarsimp simp add: homologous_rel_set_eq)
fix c d
assume c: "singular_relcycle n (subtopology X (S - U)) (T - U) c"
and d: "singular_relcycle n (subtopology X (S - U)) (T - U) d"
and hh: "hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id
(homologous_rel_set n (subtopology X (S - U)) (T - U) c)
= hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id
(homologous_rel_set n (subtopology X (S - U)) (T - U) d)"
then have scc: "singular_chain n (subtopology X (S - U)) c"
and scd: "singular_chain n (subtopology X (S - U)) d"
using singular_relcycle by blast+
have "singular_relboundary n (subtopology X (S - U)) (T - U) c"
if srb: "singular_relboundary n (subtopology X S) T c"
and src: "singular_relcycle n (subtopology X (S - U)) (T - U) c" for c
proof -
have [simp]: "(S - U) ∩ (T - U) = T - U" "S ∩ T = T"
using ‹T ⊆ S› by blast+
have c: "singular_chain n (subtopology X (S - U)) c"
"singular_chain (n - Suc 0) (subtopology X (T - U)) (chain_boundary n c)"
using that by (auto simp: singular_relcycle_def mod_subset_def subtopology_subtopology)
obtain d e where d: "singular_chain (Suc n) (subtopology X S) d"
and e: "singular_chain n (subtopology X T) e"
and dce: "chain_boundary (Suc n) d = c + e"
using srb by (auto simp: singular_relboundary_alt subtopology_subtopology)
obtain m f g where f: "singular_chain (Suc n) (subtopology X (S - U)) f"
and g: "singular_chain (Suc n) (subtopology X T) g"
and dfg: "(singular_subdivision (Suc n) ^^ m) d = f + g"
using excised_chain_exists [OF assms d] .
obtain h where
h0: "⋀p. h p 0 = (0 :: 'a chain)"
and hdiff: "⋀p c1 c2. h p (c1-c2) = h p c1 - h p c2"
and hSuc: "⋀p X c. singular_chain p X c ⟹ singular_chain (Suc p) X (h p c)"
and hchain: "⋀p X c. singular_chain p X c
⟹ chain_boundary (Suc p) (h p c) + h (p - Suc 0) (chain_boundary p c)
= (singular_subdivision p ^^ m) c - c"
using chain_homotopic_iterated_singular_subdivision by blast
have hadd: "⋀p c1 c2. h p (c1 + c2) = h p c1 + h p c2"
by (metis add_diff_cancel diff_add_cancel hdiff)
define c1 where "c1 ≡ f - h n c"
define c2 where "c2 ≡ chain_boundary (Suc n) (h n e) - (chain_boundary (Suc n) g - e)"
show ?thesis
unfolding singular_relboundary_alt
proof (intro exI conjI)
show c1: "singular_chain (Suc n) (subtopology X (S - U)) c1"
by (simp add: ‹singular_chain n (subtopology X (S - U)) c› c1_def f hSuc singular_chain_diff)
have "chain_boundary (Suc n) (chain_boundary (Suc (Suc n)) (h (Suc n) d) + h n (c+e))
= chain_boundary (Suc n) (f + g - d)"
using hchain [OF d] by (simp add: dce dfg)
then have "chain_boundary (Suc n) (h n (c + e))
= chain_boundary (Suc n) f + chain_boundary (Suc n) g - (c + e)"
using chain_boundary_boundary_alt [of "Suc n" "subtopology X S"]
by (simp add: chain_boundary_add chain_boundary_diff d hSuc dce)
then have "chain_boundary (Suc n) (h n c) + chain_boundary (Suc n) (h n e)
= chain_boundary (Suc n) f + chain_boundary (Suc n) g - (c + e)"
by (simp add: chain_boundary_add hadd)
then have *: "chain_boundary (Suc n) (f - h n c) = c + (chain_boundary (Suc n) (h n e) - (chain_boundary (Suc n) g - e))"
by (simp add: algebra_simps chain_boundary_diff)
then show "chain_boundary (Suc n) c1 = c + c2"
unfolding c1_def c2_def
by (simp add: algebra_simps chain_boundary_diff)
obtain "singular_chain n (subtopology X (S - U)) c2" "singular_chain n (subtopology X T) c2"
using singular_chain_diff c c1 *
unfolding c1_def c2_def
by (metis add_diff_cancel_left' e g hSuc singular_chain_boundary_alt)
then show "singular_chain n (subtopology (subtopology X (S - U)) (T - U)) c2"
by (fastforce simp add: singular_chain_subtopology)
qed
qed
then have "singular_relboundary n (subtopology X S) T (c - d) ⟹
singular_relboundary n (subtopology X (S - U)) (T - U) (c - d)"
using c d singular_relcycle_diff by metis
with hh show "homologous_rel n (subtopology X (S - U)) (T - U) c d"
apply (simp add: hom_induced_chain_map cont c d chain_map_ident [OF scc] chain_map_ident [OF scd])
using homologous_rel_set_eq homologous_rel_def by metis
qed
next
have h: "homologous_rel_set n (subtopology X S) T a
∈ (λx. homologous_rel_set n (subtopology X S) T (chain_map n id x)) `
singular_relcycle_set n (subtopology X (S - U)) (T - U)"
if a: "singular_relcycle n (subtopology X S) T a" for a
proof -
obtain c' where c': "singular_relcycle n (subtopology X (S - U)) (T - U) c'"
"homologous_rel n (subtopology X S) T a c'"
using a by (blast intro: excised_relcycle_exists [OF assms])
then have scc': "singular_chain n (subtopology X S) c'"
using homologous_rel_singular_chain singular_relcycle that by blast
then show ?thesis
using scc' chain_map_ident [of _ "subtopology X S"] c' homologous_rel_set_eq
by fastforce
qed
have "(λx. homologous_rel_set n (subtopology X S) T (chain_map n id x)) `
singular_relcycle_set n (subtopology X (S - U)) (T - U) =
homologous_rel_set n (subtopology X S) T `
singular_relcycle_set n (subtopology X S) T"
by (force simp: cont h singular_relcycle_chain_map)
then
show "hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id `
homologous_rel_set n (subtopology X (S - U)) (T - U) `
singular_relcycle_set n (subtopology X (S - U)) (T - U)
= homologous_rel_set n (subtopology X S) T ` singular_relcycle_set n (subtopology X S) T"
by (simp add: image_comp o_def hom_induced_chain_map_gen cont TU topspace_subtopology
cong: image_cong_simp)
qed
qed
subsection‹Additivity axiom›
text‹Not in the original Eilenberg-Steenrod list but usually included nowadays,
following Milnor's "On Axiomatic Homology Theory".›
lemma iso_chain_group_sum:
assumes disj: "pairwise disjnt 𝒰" and UU: "⋃𝒰 = topspace X"
and subs: "⋀C T. ⟦compactin X C; path_connectedin X C; T ∈ 𝒰; ~ disjnt C T⟧ ⟹ C ⊆ T"
shows "(λf. sum' f 𝒰) ∈ iso (sum_group 𝒰 (λS. chain_group p (subtopology X S))) (chain_group p X)"
proof -
have pw: "pairwise (λi j. disjnt (singular_simplex_set p (subtopology X i))
(singular_simplex_set p (subtopology X j))) 𝒰"
proof
fix S T
assume "S ∈ 𝒰" "T ∈ 𝒰" "S ≠ T"
then show "disjnt (singular_simplex_set p (subtopology X S))
(singular_simplex_set p (subtopology X T))"
using nonempty_standard_simplex [of p] disj
by (fastforce simp: pairwise_def disjnt_def singular_simplex_subtopology image_subset_iff)
qed
have "∃S∈𝒰. singular_simplex p (subtopology X S) f"
if f: "singular_simplex p X f" for f
proof -
obtain x where x: "x ∈ topspace X" "x ∈ f ` standard_simplex p"
using f nonempty_standard_simplex [of p] continuous_map_image_subset_topspace
unfolding singular_simplex_def by fastforce
then obtain S where "S ∈ 𝒰" "x ∈ S"
using UU by auto
have "f ` standard_simplex p ⊆ S"
proof (rule subs)
have cont: "continuous_map (subtopology (powertop_real UNIV)
(standard_simplex p)) X f"
using f singular_simplex_def by auto
show "compactin X (f ` standard_simplex p)"
by (simp add: compactin_subtopology compactin_standard_simplex image_compactin [OF _ cont])
show "path_connectedin X (f ` standard_simplex p)"
by (simp add: path_connectedin_subtopology path_connectedin_standard_simplex path_connectedin_continuous_map_image [OF cont])
have "standard_simplex p ≠ {}"
by (simp add: nonempty_standard_simplex)
then
show "¬ disjnt (f ` standard_simplex p) S"
using x ‹x ∈ S› by (auto simp: disjnt_def)
qed (auto simp: ‹S ∈ 𝒰›)
then show ?thesis
by (meson ‹S ∈ 𝒰› singular_simplex_subtopology that)
qed
then have "(⋃i∈𝒰. singular_simplex_set p (subtopology X i)) = singular_simplex_set p X"
by (auto simp: singular_simplex_subtopology)
then show ?thesis
using iso_free_Abelian_group_sum [OF pw] by (simp add: chain_group_def)
qed
lemma relcycle_group_0_eq_chain_group: "relcycle_group 0 X {} = chain_group 0 X"
proof (rule monoid.equality)
show "carrier (relcycle_group 0 X {}) = carrier (chain_group 0 X)"
by (simp add: Collect_mono chain_boundary_def singular_cycle subset_antisym)
qed (simp_all add: relcycle_group_def chain_group_def)
proposition iso_cycle_group_sum:
assumes disj: "pairwise disjnt 𝒰" and UU: "⋃𝒰 = topspace X"
and subs: "⋀C T. ⟦compactin X C; path_connectedin X C; T ∈ 𝒰; ¬ disjnt C T⟧ ⟹ C ⊆ T"
shows "(λf. sum' f 𝒰) ∈ iso (sum_group 𝒰 (λT. relcycle_group p (subtopology X T) {}))
(relcycle_group p X {})"
proof (cases "p = 0")
case True
then show ?thesis
by (simp add: relcycle_group_0_eq_chain_group iso_chain_group_sum [OF assms])
next
case False
let ?SG = "(sum_group 𝒰 (λT. chain_group p (subtopology X T)))"
let ?PI = "(Π⇩E T∈𝒰. singular_relcycle_set p (subtopology X T) {})"
have "(λf. sum' f 𝒰) ∈ Group.iso (subgroup_generated ?SG (carrier ?SG ∩ ?PI))
(subgroup_generated (chain_group p X) (singular_relcycle_set p X {}))"
proof (rule group_hom.iso_between_subgroups)
have iso: "(λf. sum' f 𝒰) ∈ Group.iso ?SG (chain_group p X)"
by (auto simp: assms iso_chain_group_sum)
then show "group_hom ?SG (chain_group p X) (λf. sum' f 𝒰)"
by (auto simp: iso_imp_homomorphism group_hom_def group_hom_axioms_def)
have B: "sum' f 𝒰 ∈ singular_relcycle_set p X {} ⟷ f ∈ (carrier ?SG ∩ ?PI)"
if "f ∈ (carrier ?SG)" for f
proof -
have f: "⋀S. S ∈ 𝒰 ⟶ singular_chain p (subtopology X S) (f S)"
"f ∈ extensional 𝒰" "finite {i ∈ 𝒰. f i ≠ 0}"
using that by (auto simp: carrier_sum_group PiE_def Pi_def)
then have rfin: "finite {S ∈ 𝒰. restrict (chain_boundary p ∘ f) 𝒰 S ≠ 0}"
by (auto elim: rev_finite_subset)
have "chain_boundary p ((∑x | x ∈ 𝒰 ∧ f x ≠ 0. f x)) = 0
⟷ (∀S ∈ 𝒰. chain_boundary p (f S) = 0)" (is "?cb = 0 ⟷ ?rhs")
proof
assume "?cb = 0"
moreover have "?cb = sum' (λS. chain_boundary p (f S)) 𝒰"
unfolding sum.G_def using rfin f
by (force simp: chain_boundary_sum intro: sum.mono_neutral_right cong: conj_cong)
ultimately have eq0: "sum' (λS. chain_boundary p (f S)) 𝒰 = 0"
by simp
have "(λf. sum' f 𝒰) ∈ hom (sum_group 𝒰 (λS. chain_group (p - Suc 0) (subtopology X S)))
(chain_group (p - Suc 0) X)"
and inj: "inj_on (λf. sum' f 𝒰) (carrier (sum_group 𝒰 (λS. chain_group (p - Suc 0) (subtopology X S))))"
using iso_chain_group_sum [OF assms, of "p-1"] by (auto simp: iso_def bij_betw_def)
then have eq: "⟦f ∈ (Π⇩E i∈𝒰. singular_chain_set (p - Suc 0) (subtopology X i));
finite {S ∈ 𝒰. f S ≠ 0}; sum' f 𝒰 = 0; S ∈ 𝒰⟧ ⟹ f S = 0" for f S
apply (simp add: group_hom_def group_hom_axioms_def group_hom.inj_on_one_iff [of _ "chain_group (p-1) X"])
apply (auto simp: carrier_sum_group fun_eq_iff that)
done
show ?rhs
proof clarify
fix S assume "S ∈ 𝒰"
then show "chain_boundary p (f S) = 0"
using eq [of "restrict (chain_boundary p ∘ f) 𝒰" S] rfin f eq0
by (simp add: singular_chain_boundary cong: conj_cong)
qed
next
assume ?rhs
then show "?cb = 0"
by (force simp: chain_boundary_sum intro: sum.mono_neutral_right)
qed
moreover
have "(⋀S. S ∈ 𝒰 ⟶ singular_chain p (subtopology X S) (f S))
⟹ singular_chain p X (∑x | x ∈ 𝒰 ∧ f x ≠ 0. f x)"
by (metis (no_types, lifting) mem_Collect_eq singular_chain_subtopology singular_chain_sum)
ultimately show ?thesis
using f by (auto simp: carrier_sum_group sum.G_def singular_cycle PiE_iff)
qed
have "singular_relcycle_set p X {} ⊆ carrier (chain_group p X)"
using subgroup.subset subgroup_singular_relcycle by blast
then show "(λf. sum' f 𝒰) ` (carrier ?SG ∩ ?PI) = singular_relcycle_set p X {}"
using iso B unfolding Group.iso_def
by (smt (verit, del_insts) Int_iff bij_betw_def image_iff mem_Collect_eq subset_antisym subset_iff)
qed (auto simp: assms iso_chain_group_sum)
then show ?thesis
by (simp add: relcycle_group_def sum_group_subgroup_generated subgroup_singular_relcycle)
qed
proposition homology_additivity_axiom_gen:
assumes disj: "pairwise disjnt 𝒰" and UU: "⋃𝒰 = topspace X"
and subs: "⋀C T. ⟦compactin X C; path_connectedin X C; T ∈ 𝒰; ¬ disjnt C T⟧ ⟹ C ⊆ T"
shows "(λx. gfinprod (homology_group p X)
(λV. hom_induced p (subtopology X V) {} X {} id (x V)) 𝒰)
∈ iso (sum_group 𝒰 (λS. homology_group p (subtopology X S))) (homology_group p X)"
(is "?h ∈ iso ?SG ?HG")
proof (cases "p < 0")
case True
then have [simp]: "gfinprod (singleton_group undefined) (λv. undefined) 𝒰 = undefined"
by (metis Pi_I carrier_singleton_group comm_group_def comm_monoid.gfinprod_closed singletonD singleton_abelian_group)
show ?thesis
using True
apply (simp add: iso_def relative_homology_group_def hom_induced_trivial carrier_sum_group)
apply (auto simp: singleton_group_def bij_betw_def inj_on_def fun_eq_iff)
done
next
case False
then obtain n where peq: "p = int n"
by (metis int_ops(1) linorder_neqE_linordered_idom pos_int_cases)
interpret comm_group "homology_group p X"
by (rule abelian_homology_group)
show ?thesis
proof (simp add: iso_def bij_betw_def, intro conjI)
show "?h ∈ hom ?SG ?HG"
by (rule hom_group_sum) (simp_all add: hom_induced_hom)
then interpret group_hom ?SG ?HG ?h
by (simp add: group_hom_def group_hom_axioms_def)
have carrSG: "carrier ?SG
= (λx. λS∈𝒰. homologous_rel_set n (subtopology X S) {} (x S))
` (carrier (sum_group 𝒰 (λS. relcycle_group n (subtopology X S) {})))" (is "?lhs = ?rhs")
proof
show "?lhs ⊆ ?rhs"
proof (clarsimp simp: carrier_sum_group carrier_relative_homology_group peq)
fix z
assume z: "z ∈ (Π⇩E S∈𝒰. homologous_rel_set n (subtopology X S) {} ` singular_relcycle_set n (subtopology X S) {})"
and fin: "finite {S ∈ 𝒰. z S ≠ singular_relboundary_set n (subtopology X S) {}}"
then obtain c where c: "∀S∈𝒰. singular_relcycle n (subtopology X S) {} (c S)
∧ z S = homologous_rel_set n (subtopology X S) {} (c S)"
by (simp add: PiE_def Pi_def image_def) metis
let ?f = "λS∈𝒰. if singular_relboundary n (subtopology X S) {} (c S) then 0 else c S"
have "z = (λS∈𝒰. homologous_rel_set n (subtopology X S) {} (?f S))"
by (smt (verit) PiE_restrict c homologous_rel_eq_relboundary restrict_apply restrict_ext singular_relboundary_0 z)
moreover have "?f ∈ (Π⇩E i∈𝒰. singular_relcycle_set n (subtopology X i) {})"
by (simp add: c fun_eq_iff PiE_arb [OF z])
moreover have "finite {i ∈ 𝒰. ?f i ≠ 0}"
using z c by (intro finite_subset [OF _ fin]) auto
ultimately
show "z ∈ (λx. λS∈𝒰. homologous_rel_set n (subtopology X S) {} (x S)) `
{x ∈ Π⇩E i∈𝒰. singular_relcycle_set n (subtopology X i) {}. finite {i ∈ 𝒰. x i ≠ 0}}"
by blast
qed
show "?rhs ⊆ ?lhs"
by (force simp: peq carrier_sum_group carrier_relative_homology_group homologous_rel_set_eq_relboundary
elim: rev_finite_subset)
qed
have gf: "gfinprod (homology_group p X)
(λV. hom_induced n (subtopology X V) {} X {} id
((λS∈𝒰. homologous_rel_set n (subtopology X S) {} (z S)) V)) 𝒰
= homologous_rel_set n X {} (sum' z 𝒰)" (is "?lhs = ?rhs")
if z: "z ∈ carrier (sum_group 𝒰 (λS. relcycle_group n (subtopology X S) {}))" for z
proof -
have hom_pi: "(λS. homologous_rel_set n X {} (z S)) ∈ 𝒰 → carrier (homology_group p X)"
using z
by (intro Pi_I) (force simp: peq carrier_sum_group carrier_relative_homology_group singular_chain_subtopology singular_cycle)
have fin: "finite {S ∈ 𝒰. z S ≠ 0}"
using that by (force simp: carrier_sum_group)
have "?lhs = gfinprod (homology_group p X) (λS. homologous_rel_set n X {} (z S)) 𝒰"
proof (rule gfinprod_cong [OF refl Pi_I])
fix i
show "i ∈ 𝒰 =simp=> hom_induced (int n) (subtopology X i) {} X {} id ((λS∈𝒰. homologous_rel_set n (subtopology X S) {} (z S)) i)
= homologous_rel_set n X {} (z i)"
using that
by (auto simp: peq simp_implies_def carrier_sum_group PiE_def Pi_def chain_map_ident singular_cycle hom_induced_chain_map)
qed (simp add: hom_induced_carrier peq)
also have "… = gfinprod (homology_group p X)
(λS. homologous_rel_set n X {} (z S)) {S ∈ 𝒰. z S ≠ 0}"
proof -
have "homologous_rel_set n X {} 0 = singular_relboundary_set n X {}"
by (metis homologous_rel_eq_relboundary singular_relboundary_0)
with hom_pi peq show ?thesis
by (intro gfinprod_mono_neutral_cong_right) auto
qed
also have "… = ?rhs"
proof -
have "gfinprod (homology_group p X) (λS. homologous_rel_set n X {} (z S)) ℱ
= homologous_rel_set n X {} (sum z ℱ)"
if "finite ℱ" "ℱ ⊆ {S ∈ 𝒰. z S ≠ 0}" for ℱ
using that
proof (induction ℱ)
case empty
have "𝟭⇘homology_group p X⇙ = homologous_rel_set n X {} 0"
by (metis homologous_rel_eq_relboundary one_relative_homology_group peq singular_relboundary_0)
then show ?case
by simp
next
case (insert S ℱ)
with z have pi: "(λS. homologous_rel_set n X {} (z S)) ∈ ℱ → carrier (homology_group p X)"
"homologous_rel_set n X {} (z S) ∈ carrier (homology_group p X)"
by (force simp: peq carrier_sum_group carrier_relative_homology_group singular_chain_subtopology singular_cycle)+
have hom: "homologous_rel_set n X {} (z S) ∈ carrier (homology_group p X)"
using insert z
by (force simp: peq carrier_sum_group carrier_relative_homology_group singular_chain_subtopology singular_cycle)
show ?case
using insert z
proof (simp add: pi)
have "⋀x. homologous_rel n X {} (z S + sum z ℱ) x
⟹ ∃u v. homologous_rel n X {} (z S) u ∧ homologous_rel n X {} (sum z ℱ) v ∧ x = u + v"
by (metis (no_types, lifting) diff_add_cancel diff_diff_eq2 homologous_rel_def homologous_rel_refl)
with insert z
show "homologous_rel_set n X {} (z S) ⊗⇘homology_group p X⇙ homologous_rel_set n X {} (sum z ℱ)
= homologous_rel_set n X {} (z S + sum z ℱ)"
using insert z by (auto simp: peq homologous_rel_add mult_relative_homology_group)
qed
qed
with fin show ?thesis
by (simp add: sum.G_def)
qed
finally show ?thesis .
qed
show "inj_on ?h (carrier ?SG)"
proof (clarsimp simp add: inj_on_one_iff)
fix x
assume x: "x ∈ carrier (sum_group 𝒰 (λS. homology_group p (subtopology X S)))"
and 1: "gfinprod (homology_group p X) (λV. hom_induced p (subtopology X V) {} X {} id (x V)) 𝒰
= 𝟭⇘homology_group p X⇙"
have feq: "(λS∈𝒰. homologous_rel_set n (subtopology X S) {} (z S))
= (λS∈𝒰. 𝟭⇘homology_group p (subtopology X S)⇙)"
if z: "z ∈ carrier (sum_group 𝒰 (λS. relcycle_group n (subtopology X S) {}))"
and eq: "homologous_rel_set n X {} (sum' z 𝒰) = 𝟭⇘homology_group p X⇙" for z
proof -
have "z ∈ (Π⇩E S∈𝒰. singular_relcycle_set n (subtopology X S) {})" "finite {S ∈ 𝒰. z S ≠ 0}"
using z by (auto simp: carrier_sum_group)
have "singular_relboundary n X {} (sum' z 𝒰)"
using eq singular_chain_imp_relboundary by (auto simp: relative_homology_group_def peq)
then obtain d where scd: "singular_chain (Suc n) X d" and cbd: "chain_boundary (Suc n) d = sum' z 𝒰"
by (auto simp: singular_boundary)
have *: "∃d. singular_chain (Suc n) (subtopology X S) d ∧ chain_boundary (Suc n) d = z S"
if "S ∈ 𝒰" for S
proof -
have inj': "inj_on (λf. sum' f 𝒰) {x ∈ Π⇩E S∈𝒰. singular_chain_set (Suc n) (subtopology X S). finite {S ∈ 𝒰. x S ≠ 0}}"
using iso_chain_group_sum [OF assms, of "Suc n"]
by (simp add: iso_iff_mon_epi mon_def carrier_sum_group)
obtain w where w: "w ∈ (Π⇩E S∈𝒰. singular_chain_set (Suc n) (subtopology X S))"
and finw: "finite {S ∈ 𝒰. w S ≠ 0}"
and deq: "d = sum' w 𝒰"
using iso_chain_group_sum [OF assms, of "Suc n"] scd
by (auto simp: iso_iff_mon_epi epi_def carrier_sum_group set_eq_iff)
with ‹S ∈ 𝒰› have scwS: "singular_chain (Suc n) (subtopology X S) (w S)"
by blast
have "inj_on (λf. sum' f 𝒰) {x ∈ Π⇩E S∈𝒰. singular_chain_set n (subtopology X S). finite {S ∈ 𝒰. x S ≠ 0}}"
using iso_chain_group_sum [OF assms, of n]
by (simp add: iso_iff_mon_epi mon_def carrier_sum_group)
then have "(λS∈𝒰. chain_boundary (Suc n) (w S)) = z"
proof (rule inj_onD)
have "sum' (λS∈𝒰. chain_boundary (Suc n) (w S)) 𝒰 = sum' (chain_boundary (Suc n) ∘ w) {S ∈ 𝒰. w S ≠ 0}"
by (auto simp: o_def intro: sum.mono_neutral_right')
also have "… = chain_boundary (Suc n) d"
by (auto simp: sum.G_def deq chain_boundary_sum finw intro: finite_subset [OF _ finw] sum.mono_neutral_left)
finally show "sum' (λS∈𝒰. chain_boundary (Suc n) (w S)) 𝒰 = sum' z 𝒰"
by (simp add: cbd)
show "(λS∈𝒰. chain_boundary (Suc n) (w S)) ∈ {x ∈ Π⇩E S∈𝒰. singular_chain_set n (subtopology X S). finite {S ∈ 𝒰. x S ≠ 0}}"
using w by (auto simp: PiE_iff singular_chain_boundary_alt cong: rev_conj_cong intro: finite_subset [OF _ finw])
show "z ∈ {x ∈ Π⇩E S∈𝒰. singular_chain_set n (subtopology X S). finite {S ∈ 𝒰. x S ≠ 0}}"
using z by (simp_all add: carrier_sum_group PiE_iff singular_cycle)
qed
with ‹S ∈ 𝒰› scwS show ?thesis
by force
qed
show ?thesis
using that *
by (force intro!: restrict_ext simp add: singular_boundary relative_homology_group_def homologous_rel_set_eq_relboundary peq)
qed
show "x = (λS∈𝒰. 𝟭⇘homology_group p (subtopology X S)⇙)"
using x 1 carrSG gf
by (auto simp: peq feq)
qed
show "?h ` carrier ?SG = carrier ?HG"
proof safe
fix A
assume "A ∈ carrier (homology_group p X)"
then obtain y where y: "singular_relcycle n X {} y" and xeq: "A = homologous_rel_set n X {} y"
by (auto simp: peq carrier_relative_homology_group)
then obtain x where "x ∈ carrier (sum_group 𝒰 (λT. relcycle_group n (subtopology X T) {}))"
"y = sum' x 𝒰"
using iso_cycle_group_sum [OF assms, of n] that by (force simp: iso_iff_mon_epi epi_def)
then show "A ∈ (λx. gfinprod (homology_group p X) (λV. hom_induced p (subtopology X V) {} X {} id (x V)) 𝒰) `
carrier (sum_group 𝒰 (λS. homology_group p (subtopology X S)))"
apply (simp add: carrSG image_comp o_def xeq)
apply (simp add: hom_induced_carrier peq flip: gf cong: gfinprod_cong)
done
qed auto
qed
qed
corollary homology_additivity_axiom:
assumes disj: "pairwise disjnt 𝒰" and UU: "⋃𝒰 = topspace X"
and ope: "⋀v. v ∈ 𝒰 ⟹ openin X v"
shows "(λx. gfinprod (homology_group p X)
(λv. hom_induced p (subtopology X v) {} X {} id (x v)) 𝒰)
∈ iso (sum_group 𝒰 (λS. homology_group p (subtopology X S))) (homology_group p X)"
proof (rule homology_additivity_axiom_gen [OF disj UU])
fix C T
assume
"compactin X C" and
"path_connectedin X C" and
"T ∈ 𝒰" and
"¬ disjnt C T"
then have *: "⋀B. ⟦openin X T; T ∩ B ∩ C = {}; C ⊆ T ∪ B; openin X B⟧ ⟹ B ∩ C = {}"
by (meson connectedin disjnt_def disjnt_sym path_connectedin_imp_connectedin)
have "C ⊆ Union 𝒰"
by (simp add: UU ‹compactin X C› compactin_subset_topspace)
moreover have "⋃ (𝒰 - {T}) ∩ C = {}"
proof (rule *)
show "T ∩ ⋃ (𝒰 - {T}) ∩ C = {}"
using ‹T ∈ 𝒰› disj disjointD by fastforce
show "C ⊆ T ∪ ⋃ (𝒰 - {T})"
using ‹C ⊆ ⋃ 𝒰› by fastforce
qed (auto simp: ‹T ∈ 𝒰› ope)
ultimately show "C ⊆ T"
by blast
qed
subsection‹Special properties of singular homology›
text‹In particular: the zeroth homology group is isomorphic to the free abelian group
generated by the path components. So, the "coefficient group" is the integers.›
lemma iso_integer_zeroth_homology_group_aux:
assumes X: "path_connected_space X" and f: "singular_simplex 0 X f" and f': "singular_simplex 0 X f'"
shows "homologous_rel 0 X {} (frag_of f) (frag_of f')"
proof -
let ?p = "λj. if j = 0 then 1 else 0"
have "f ?p ∈ topspace X" "f' ?p ∈ topspace X"
using assms by (auto simp: singular_simplex_def continuous_map_def)
then obtain g where g: "pathin X g"
and g0: "g 0 = f ?p"
and g1: "g 1 = f' ?p"
using assms by (force simp: path_connected_space_def)
then have contg: "continuous_map (subtopology euclideanreal {0..1}) X g"
by (simp add: pathin_def)
have "singular_chain (Suc 0) X (frag_of (restrict (g ∘ (λx. x 0)) (standard_simplex 1)))"
proof -
have "continuous_map (subtopology (powertop_real UNIV) (standard_simplex (Suc 0)))
euclideanreal (λx. x 0)"
by (metis (mono_tags) UNIV_I continuous_map_from_subtopology continuous_map_product_projection)
then have "continuous_map (subtopology (powertop_real UNIV) (standard_simplex (Suc 0)))
(top_of_set {0..1}) (λx. x 0)"
unfolding continuous_map_in_subtopology g
by (auto simp: continuous_map_in_subtopology standard_simplex_def g)
moreover have "continuous_map (top_of_set {0..1}) X g"
using contg by blast
ultimately show ?thesis
by (force simp: singular_chain_of chain_boundary_of singular_simplex_def continuous_map_compose)
qed
moreover
have "chain_boundary (Suc 0) (frag_of (restrict (g ∘ (λx. x 0)) (standard_simplex 1))) =
frag_of f - frag_of f'"
proof -
have "singular_face (Suc 0) 0 (g ∘ (λx. x 0)) = f"
"singular_face (Suc 0) (Suc 0) (g ∘ (λx. x 0)) = f'"
using assms
by (auto simp: singular_face_def singular_simplex_def extensional_def simplical_face_def standard_simplex_0 g0 g1)
then show ?thesis
by (simp add: singular_chain_of chain_boundary_of)
qed
ultimately
show ?thesis
by (auto simp: homologous_rel_def singular_boundary)
qed
proposition iso_integer_zeroth_homology_group:
assumes X: "path_connected_space X" and f: "singular_simplex 0 X f"
shows "pow (homology_group 0 X) (homologous_rel_set 0 X {} (frag_of f))
∈ iso integer_group (homology_group 0 X)" (is "pow ?H ?q ∈ iso _ ?H")
proof -
have srf: "singular_relcycle 0 X {} (frag_of f)"
by (simp add: chain_boundary_def f singular_chain_of singular_cycle)
then have qcarr: "?q ∈ carrier ?H"
by (simp add: carrier_relative_homology_group_0)
have 1: "homologous_rel_set 0 X {} a ∈ range (λn. homologous_rel_set 0 X {} (frag_cmul n (frag_of f)))"
if "singular_relcycle 0 X {} a" for a
proof -
have "singular_chain 0 X d ⟹
homologous_rel_set 0 X {} d ∈ range (λn. homologous_rel_set 0 X {} (frag_cmul n (frag_of f)))" for d
unfolding singular_chain_def
proof (induction d rule: frag_induction)
case zero
then show ?case
by (metis frag_cmul_zero rangeI)
next
case (one x)
then have "∃i. homologous_rel_set 0 X {} (frag_cmul i (frag_of f))
= homologous_rel_set 0 X {} (frag_of x)"
by (metis (no_types) iso_integer_zeroth_homology_group_aux [OF X] f frag_cmul_one homologous_rel_eq mem_Collect_eq)
with one show ?case
by auto
next
case (diff a b)
then obtain c d where
"homologous_rel 0 X {} (a - b) (frag_cmul c (frag_of f) - frag_cmul d (frag_of f))"
using homologous_rel_diff by (fastforce simp add: homologous_rel_set_eq)
then show ?case
by (rule_tac x="c-d" in image_eqI) (auto simp: homologous_rel_set_eq frag_cmul_diff_distrib)
qed
with that show ?thesis
unfolding singular_relcycle_def by blast
qed
have 2: "n = 0"
if "homologous_rel_set 0 X {} (frag_cmul n (frag_of f)) = 𝟭⇘relative_homology_group 0 X {}⇙"
for n
proof -
have "singular_chain (Suc 0) X d
⟹ frag_extend (λx. frag_of f) (chain_boundary (Suc 0) d) = 0" for d
unfolding singular_chain_def
proof (induction d rule: frag_induction)
case (one x)
then show ?case
by (simp add: frag_extend_diff chain_boundary_of)
next
case (diff a b)
then show ?case
by (simp add: chain_boundary_diff frag_extend_diff)
qed auto
with that show ?thesis
by (force simp: singular_boundary relative_homology_group_def homologous_rel_set_eq_relboundary frag_extend_cmul)
qed
interpret GH : group_hom integer_group ?H "([^]⇘?H⇙) ?q"
by (simp add: group_hom_def group_hom_axioms_def qcarr group.hom_integer_group_pow)
have eq: "pow ?H ?q = (λn. homologous_rel_set 0 X {} (frag_cmul n (frag_of f)))"
proof
fix n
have "frag_of f
∈ carrier (subgroup_generated
(free_Abelian_group (singular_simplex_set 0 X)) (singular_relcycle_set 0 X {}))"
by (metis carrier_relcycle_group chain_group_def mem_Collect_eq relcycle_group_def srf)
then have ff: "frag_of f [^]⇘relcycle_group 0 X {}⇙ n = frag_cmul n (frag_of f)"
by (simp add: relcycle_group_def chain_group_def group.int_pow_subgroup_generated f)
show "pow ?H ?q n = homologous_rel_set 0 X {} (frag_cmul n (frag_of f))"
apply (rule subst [OF right_coset_singular_relboundary])
by (simp add: ff normal.FactGroup_int_pow normal_subgroup_singular_relboundary_relcycle relative_homology_group_def srf)
qed
show ?thesis
apply (subst GH.iso_iff)
apply (simp add: eq)
apply (auto simp: carrier_relative_homology_group_0 1 2)
done
qed
corollary isomorphic_integer_zeroth_homology_group:
assumes X: "path_connected_space X" "topspace X ≠ {}"
shows "homology_group 0 X ≅ integer_group"
proof -
obtain a where a: "a ∈ topspace X"
using assms by blast
have "singular_simplex 0 X (restrict (λx. a) (standard_simplex 0))"
by (simp add: singular_simplex_def a)
then show ?thesis
using X group.iso_sym group_integer_group is_isoI iso_integer_zeroth_homology_group by blast
qed
corollary homology_coefficients:
"topspace X = {a} ⟹ homology_group 0 X ≅ integer_group"
using isomorphic_integer_zeroth_homology_group path_connectedin_topspace by fastforce
proposition zeroth_homology_group:
"homology_group 0 X ≅ free_Abelian_group (path_components_of X)"
proof -
obtain h where h: "h ∈ iso (sum_group (path_components_of X) (λS. homology_group 0 (subtopology X S)))
(homology_group 0 X)"
proof (rule that [OF homology_additivity_axiom_gen])
show "disjoint (path_components_of X)"
by (simp add: pairwise_disjoint_path_components_of)
show "⋃(path_components_of X) = topspace X"
by (rule Union_path_components_of)
next
fix C T
assume "path_connectedin X C" "T ∈ path_components_of X" "¬ disjnt C T"
then show "C ⊆ T"
by (metis path_components_of_maximal disjnt_sym)+
qed
have "homology_group 0 X ≅ sum_group (path_components_of X) (λS. homology_group 0 (subtopology X S))"
by (rule group.iso_sym) (use h is_iso_def in auto)
also have "… ≅ sum_group (path_components_of X) (λi. integer_group)"
proof (rule iso_sum_groupI)
show "homology_group 0 (subtopology X i) ≅ integer_group" if "i ∈ path_components_of X" for i
by (metis that isomorphic_integer_zeroth_homology_group nonempty_path_components_of
path_connectedin_def path_connectedin_path_components_of topspace_subtopology_subset)
qed auto
also have "… ≅ free_Abelian_group (path_components_of X)"
using path_connectedin_path_components_of nonempty_path_components_of
by (simp add: isomorphic_sum_integer_group path_connectedin_def)
finally show ?thesis .
qed
lemma isomorphic_homology_imp_path_components:
assumes "homology_group 0 X ≅ homology_group 0 Y"
shows "path_components_of X ≈ path_components_of Y"
proof -
have "free_Abelian_group (path_components_of X) ≅ homology_group 0 X"
by (rule group.iso_sym) (auto simp: zeroth_homology_group)
also have "… ≅ homology_group 0 Y"
by (rule assms)
also have "… ≅ free_Abelian_group (path_components_of Y)"
by (rule zeroth_homology_group)
finally have "free_Abelian_group (path_components_of X) ≅ free_Abelian_group (path_components_of Y)" .
then show ?thesis
by (simp add: isomorphic_free_Abelian_groups)
qed
lemma isomorphic_homology_imp_path_connectedness:
assumes "homology_group 0 X ≅ homology_group 0 Y"
shows "path_connected_space X ⟷ path_connected_space Y"
proof -
obtain h where h: "bij_betw h (path_components_of X) (path_components_of Y)"
using assms isomorphic_homology_imp_path_components eqpoll_def by blast
have 1: "path_components_of X ⊆ {a} ⟹ path_components_of Y ⊆ {h a}" for a
using h unfolding bij_betw_def by blast
have 2: "path_components_of Y ⊆ {a}
⟹ path_components_of X ⊆ {inv_into (path_components_of X) h a}" for a
using h [THEN bij_betw_inv_into] unfolding bij_betw_def by blast
show ?thesis
unfolding path_connected_space_iff_components_subset_singleton
by (blast intro: dest: 1 2)
qed
subsection‹More basic properties of homology groups, deduced from the E-S axioms›
lemma trivial_homology_group:
"p < 0 ⟹ trivial_group(homology_group p X)"
by simp
lemma hom_induced_empty_hom:
"(hom_induced p X {} X' {} f) ∈ hom (homology_group p X) (homology_group p X')"
by (simp add: hom_induced_hom)
lemma hom_induced_compose_empty:
"⟦continuous_map X Y f; continuous_map Y Z g⟧
⟹ hom_induced p X {} Z {} (g ∘ f) = hom_induced p Y {} Z {} g ∘ hom_induced p X {} Y {} f"
by (simp add: hom_induced_compose)
lemma homology_homotopy_empty:
"homotopic_with (λh. True) X Y f g ⟹ hom_induced p X {} Y {} f = hom_induced p X {} Y {} g"
by (simp add: homology_homotopy_axiom)
lemma homotopy_equivalence_relative_homology_group_isomorphisms:
assumes contf: "continuous_map X Y f" and fim: "f ` S ⊆ T"
and contg: "continuous_map Y X g" and gim: "g ` T ⊆ S"
and gf: "homotopic_with (λh. h ` S ⊆ S) X X (g ∘ f) id"
and fg: "homotopic_with (λk. k ` T ⊆ T) Y Y (f ∘ g) id"
shows "group_isomorphisms (relative_homology_group p X S) (relative_homology_group p Y T)
(hom_induced p X S Y T f) (hom_induced p Y T X S g)"
unfolding group_isomorphisms_def
proof (intro conjI ballI)
fix x
assume x: "x ∈ carrier (relative_homology_group p X S)"
then show "hom_induced p Y T X S g (hom_induced p X S Y T f x) = x"
using homology_homotopy_axiom [OF gf, of p]
by (simp add: contf contg fim gim hom_induced_compose' hom_induced_id)
next
fix y
assume "y ∈ carrier (relative_homology_group p Y T)"
then show "hom_induced p X S Y T f (hom_induced p Y T X S g y) = y"
using homology_homotopy_axiom [OF fg, of p]
by (simp add: contf contg fim gim hom_induced_compose' hom_induced_id)
qed (auto simp: hom_induced_hom)
lemma homotopy_equivalence_relative_homology_group_isomorphism:
assumes "continuous_map X Y f" and fim: "f ` S ⊆ T"
and "continuous_map Y X g" and gim: "g ` T ⊆ S"
and "homotopic_with (λh. h ` S ⊆ S) X X (g ∘ f) id"
and "homotopic_with (λk. k ` T ⊆ T) Y Y (f ∘ g) id"
shows "(hom_induced p X S Y T f) ∈ iso (relative_homology_group p X S) (relative_homology_group p Y T)"
using homotopy_equivalence_relative_homology_group_isomorphisms [OF assms] group_isomorphisms_imp_iso
by metis
lemma homotopy_equivalence_homology_group_isomorphism:
assumes "continuous_map X Y f"
and "continuous_map Y X g"
and "homotopic_with (λh. True) X X (g ∘ f) id"
and "homotopic_with (λk. True) Y Y (f ∘ g) id"
shows "(hom_induced p X {} Y {} f) ∈ iso (homology_group p X) (homology_group p Y)"
using assms by (intro homotopy_equivalence_relative_homology_group_isomorphism) auto
lemma homotopy_equivalent_space_imp_isomorphic_relative_homology_groups:
assumes "continuous_map X Y f" and fim: "f ` S ⊆ T"
and "continuous_map Y X g" and gim: "g ` T ⊆ S"
and "homotopic_with (λh. h ` S ⊆ S) X X (g ∘ f) id"
and "homotopic_with (λk. k ` T ⊆ T) Y Y (f ∘ g) id"
shows "relative_homology_group p X S ≅ relative_homology_group p Y T"
using homotopy_equivalence_relative_homology_group_isomorphism [OF assms]
unfolding is_iso_def by blast
lemma homotopy_equivalent_space_imp_isomorphic_homology_groups:
"X homotopy_equivalent_space Y ⟹ homology_group p X ≅ homology_group p Y"
unfolding homotopy_equivalent_space_def
by (auto intro: homotopy_equivalent_space_imp_isomorphic_relative_homology_groups)
lemma homeomorphic_space_imp_isomorphic_homology_groups:
"X homeomorphic_space Y ⟹ homology_group p X ≅ homology_group p Y"
by (simp add: homeomorphic_imp_homotopy_equivalent_space homotopy_equivalent_space_imp_isomorphic_homology_groups)
lemma trivial_relative_homology_group_gen:
assumes "continuous_map X (subtopology X S) f"
"homotopic_with (λh. True) (subtopology X S) (subtopology X S) f id"
"homotopic_with (λk. True) X X f id"
shows "trivial_group(relative_homology_group p X S)"
proof (rule exact_seq_imp_triviality)
show "exact_seq ([homology_group (p-1) X,
homology_group (p-1) (subtopology X S),
relative_homology_group p X S, homology_group p X, homology_group p (subtopology X S)],
[hom_induced (p-1) (subtopology X S) {} X {} id,
hom_boundary p X S,
hom_induced p X {} X S id,
hom_induced p (subtopology X S) {} X {} id])"
using homology_exactness_axiom_1 homology_exactness_axiom_2 homology_exactness_axiom_3
by (metis exact_seq_cons_iff)
next
show "hom_induced p (subtopology X S) {} X {} id
∈ iso (homology_group p (subtopology X S)) (homology_group p X)"
"hom_induced (p-1) (subtopology X S) {} X {} id
∈ iso (homology_group (p-1) (subtopology X S)) (homology_group (p-1) X)"
using assms
by (auto intro: homotopy_equivalence_relative_homology_group_isomorphism)
qed
lemma trivial_relative_homology_group_topspace:
"trivial_group(relative_homology_group p X (topspace X))"
by (rule trivial_relative_homology_group_gen [where f=id]) auto
lemma trivial_relative_homology_group_empty:
"topspace X = {} ⟹ trivial_group(relative_homology_group p X S)"
by (metis Int_absorb2 empty_subsetI relative_homology_group_restrict trivial_relative_homology_group_topspace)
lemma trivial_homology_group_empty:
"topspace X = {} ⟹ trivial_group(homology_group p X)"
by (simp add: trivial_relative_homology_group_empty)
lemma homeomorphic_maps_relative_homology_group_isomorphisms:
assumes "homeomorphic_maps X Y f g" and im: "f ` S ⊆ T" "g ` T ⊆ S"
shows "group_isomorphisms (relative_homology_group p X S) (relative_homology_group p Y T)
(hom_induced p X S Y T f) (hom_induced p Y T X S g)"
proof -
have fg: "continuous_map X Y f" "continuous_map Y X g"
"(∀x∈topspace X. g (f x) = x)" "(∀y∈topspace Y. f (g y) = y)"
using assms by (simp_all add: homeomorphic_maps_def)
have "group_isomorphisms
(relative_homology_group p X (topspace X ∩ S))
(relative_homology_group p Y (topspace Y ∩ T))
(hom_induced p X (topspace X ∩ S) Y (topspace Y ∩ T) f)
(hom_induced p Y (topspace Y ∩ T) X (topspace X ∩ S) g)"
proof (rule homotopy_equivalence_relative_homology_group_isomorphisms)
show "homotopic_with (λh. h ` (topspace X ∩ S) ⊆ topspace X ∩ S) X X (g ∘ f) id"
using fg im by (auto intro: homotopic_with_equal continuous_map_compose)
next
show "homotopic_with (λk. k ` (topspace Y ∩ T) ⊆ topspace Y ∩ T) Y Y (f ∘ g) id"
using fg im by (auto intro: homotopic_with_equal continuous_map_compose)
qed (use im fg in ‹auto simp: continuous_map_def›)
then show ?thesis
by simp
qed
lemma homeomorphic_map_relative_homology_iso:
assumes f: "homeomorphic_map X Y f" and S: "S ⊆ topspace X" "f ` S = T"
shows "(hom_induced p X S Y T f) ∈ iso (relative_homology_group p X S) (relative_homology_group p Y T)"
proof -
obtain g where g: "homeomorphic_maps X Y f g"
using homeomorphic_map_maps f by metis
then have "group_isomorphisms (relative_homology_group p X S) (relative_homology_group p Y T)
(hom_induced p X S Y T f) (hom_induced p Y T X S g)"
using S g by (auto simp: homeomorphic_maps_def intro!: homeomorphic_maps_relative_homology_group_isomorphisms)
then show ?thesis
by (rule group_isomorphisms_imp_iso)
qed
lemma inj_on_hom_induced_section_map:
assumes "section_map X Y f"
shows "inj_on (hom_induced p X {} Y {} f) (carrier (homology_group p X))"
proof -
obtain g where cont: "continuous_map X Y f" "continuous_map Y X g"
and gf: "⋀x. x ∈ topspace X ⟹ g (f x) = x"
using assms by (auto simp: section_map_def retraction_maps_def)
show ?thesis
proof (rule inj_on_inverseI)
fix x
assume x: "x ∈ carrier (homology_group p X)"
have "continuous_map X X (λx. g (f x))"
by (metis (no_types, lifting) continuous_map_eq continuous_map_id gf id_apply)
with x show "hom_induced p Y {} X {} g (hom_induced p X {} Y {} f x) = x"
using hom_induced_compose_empty [OF cont, symmetric]
by (metis comp_apply cont continuous_map_compose gf hom_induced_id_gen)
qed
qed
corollary mon_hom_induced_section_map:
assumes "section_map X Y f"
shows "(hom_induced p X {} Y {} f) ∈ mon (homology_group p X) (homology_group p Y)"
by (simp add: hom_induced_empty_hom inj_on_hom_induced_section_map [OF assms] mon_def)
lemma surj_hom_induced_retraction_map:
assumes "retraction_map X Y f"
shows "carrier (homology_group p Y) = (hom_induced p X {} Y {} f) ` carrier (homology_group p X)"
(is "?lhs = ?rhs")
proof -
obtain g where cont: "continuous_map Y X g" "continuous_map X Y f"
and fg: "⋀x. x ∈ topspace Y ⟹ f (g x) = x"
using assms by (auto simp: retraction_map_def retraction_maps_def)
have "x = hom_induced p X {} Y {} f (hom_induced p Y {} X {} g x)"
if x: "x ∈ carrier (homology_group p Y)" for x
proof -
have "continuous_map Y Y (λx. f (g x))"
by (metis (no_types, lifting) continuous_map_eq continuous_map_id fg id_apply)
with x show ?thesis
using hom_induced_compose_empty [OF cont, symmetric]
by (metis comp_def cont continuous_map_compose fg hom_induced_id_gen)
qed
moreover
have "(hom_induced p Y {} X {} g x) ∈ carrier (homology_group p X)"
if "x ∈ carrier (homology_group p Y)" for x
by (metis hom_induced)
ultimately have "?lhs ⊆ ?rhs"
by auto
moreover have "?rhs ⊆ ?lhs"
using hom_induced_hom [of p X "{}" Y "{}" f]
by (simp add: hom_def flip: image_subset_iff_funcset)
ultimately show ?thesis
by auto
qed
corollary epi_hom_induced_retraction_map:
assumes "retraction_map X Y f"
shows "(hom_induced p X {} Y {} f) ∈ epi (homology_group p X) (homology_group p Y)"
using assms epi_iff_subset hom_induced_empty_hom surj_hom_induced_retraction_map by fastforce
lemma homeomorphic_map_homology_iso:
assumes "homeomorphic_map X Y f"
shows "(hom_induced p X {} Y {} f) ∈ iso (homology_group p X) (homology_group p Y)"
using assms by (simp add: homeomorphic_map_relative_homology_iso)
lemma inj_on_hom_induced_inclusion:
assumes "S = {} ∨ S retract_of_space X"
shows "inj_on (hom_induced p (subtopology X S) {} X {} id) (carrier (homology_group p (subtopology X S)))"
using assms
proof
assume "S = {}"
then have "trivial_group(homology_group p (subtopology X S))"
by (auto simp: topspace_subtopology intro: trivial_homology_group_empty)
then show ?thesis
by (auto simp: inj_on_def trivial_group_def)
next
assume "S retract_of_space X"
then show ?thesis
by (simp add: retract_of_space_section_map inj_on_hom_induced_section_map)
qed
lemma trivial_homomorphism_hom_boundary_inclusion:
assumes "S = {} ∨ S retract_of_space X"
shows "trivial_homomorphism
(relative_homology_group p X S) (homology_group (p-1) (subtopology X S))
(hom_boundary p X S)"
using exact_seq_mon_eq_triviality inj_on_hom_induced_inclusion [OF assms]
by (metis exact_seq_cons_iff homology_exactness_axiom_1 homology_exactness_axiom_2)
lemma epi_hom_induced_relativization:
assumes "S = {} ∨ S retract_of_space X"
shows "(hom_induced p X {} X S id) ` carrier (homology_group p X) = carrier (relative_homology_group p X S)"
using exact_seq_epi_eq_triviality trivial_homomorphism_hom_boundary_inclusion
by (metis assms exact_seq_cons_iff homology_exactness_axiom_1 homology_exactness_axiom_2)
lemmas short_exact_sequence_hom_induced_inclusion = homology_exactness_axiom_3
lemma group_isomorphisms_homology_group_prod_retract:
assumes "S = {} ∨ S retract_of_space X"
obtains ℋ 𝒦 where
"subgroup ℋ (homology_group p X)"
"subgroup 𝒦 (homology_group p X)"
"(λ(x, y). x ⊗⇘homology_group p X⇙ y)
∈ iso (DirProd (subgroup_generated (homology_group p X) ℋ) (subgroup_generated (homology_group p X) 𝒦))
(homology_group p X)"
"(hom_induced p (subtopology X S) {} X {} id)
∈ iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group p X) ℋ)"
"(hom_induced p X {} X S id)
∈ iso (subgroup_generated (homology_group p X) 𝒦) (relative_homology_group p X S)"
using assms
proof
assume "S = {}"
show thesis
proof (rule splitting_lemma_left [OF homology_exactness_axiom_3 [of p]])
let ?f = "λx. one(homology_group p (subtopology X {}))"
show "?f ∈ hom (homology_group p X) (homology_group p (subtopology X {}))"
by (simp add: trivial_hom)
have tg: "trivial_group (homology_group p (subtopology X {}))"
by (auto simp: topspace_subtopology trivial_homology_group_empty)
then have [simp]: "carrier (homology_group p (subtopology X {})) = {one (homology_group p (subtopology X {}))}"
by (auto simp: trivial_group_def)
then show "?f (hom_induced p (subtopology X {}) {} X {} id x) = x"
if "x ∈ carrier (homology_group p (subtopology X {}))" for x
using that by auto
show "inj_on (hom_induced p (subtopology X {}) {} X {} id)
(carrier (homology_group p (subtopology X {})))"
by (meson inj_on_hom_induced_inclusion)
show "hom_induced p X {} X {} id ` carrier (homology_group p X) = carrier (homology_group p X)"
by (metis epi_hom_induced_relativization)
next
fix ℋ 𝒦
assume *: "ℋ ⊲ homology_group p X" "𝒦 ⊲ homology_group p X"
"ℋ ∩ 𝒦 ⊆ {𝟭⇘homology_group p X⇙}"
"hom_induced p (subtopology X {}) {} X {} id
∈ Group.iso (homology_group p (subtopology X {})) (subgroup_generated (homology_group p X) ℋ)"
"hom_induced p X {} X {} id
∈ Group.iso (subgroup_generated (homology_group p X) 𝒦) (relative_homology_group p X {})"
"ℋ <#>⇘homology_group p X⇙ 𝒦 = carrier (homology_group p X)"
show thesis
proof (rule that)
show "(λ(x, y). x ⊗⇘homology_group p X⇙ y)
∈ iso (subgroup_generated (homology_group p X) ℋ ×× subgroup_generated (homology_group p X) 𝒦)
(homology_group p X)"
using * by (simp add: group_disjoint_sum.iso_group_mul normal_def group_disjoint_sum_def)
qed (use ‹S = {}› * in ‹auto simp: normal_def›)
qed
next
assume "S retract_of_space X"
then obtain r where "S ⊆ topspace X" and r: "continuous_map X (subtopology X S) r"
and req: "∀x ∈ S. r x = x"
by (auto simp: retract_of_space_def)
show thesis
proof (rule splitting_lemma_left [OF homology_exactness_axiom_3 [of p]])
let ?f = "hom_induced p X {} (subtopology X S) {} r"
show "?f ∈ hom (homology_group p X) (homology_group p (subtopology X S))"
by (simp add: hom_induced_empty_hom)
show eqx: "?f (hom_induced p (subtopology X S) {} X {} id x) = x"
if "x ∈ carrier (homology_group p (subtopology X S))" for x
proof -
have "hom_induced p (subtopology X S) {} (subtopology X S) {} r x = x"
by (metis ‹S ⊆ topspace X› continuous_map_from_subtopology hom_induced_id_gen inf.absorb_iff2 r req that topspace_subtopology)
then show ?thesis
by (simp add: r hom_induced_compose [unfolded o_def fun_eq_iff, rule_format, symmetric])
qed
then show "inj_on (hom_induced p (subtopology X S) {} X {} id)
(carrier (homology_group p (subtopology X S)))"
unfolding inj_on_def by metis
show "hom_induced p X {} X S id ` carrier (homology_group p X) = carrier (relative_homology_group p X S)"
by (simp add: ‹S retract_of_space X› epi_hom_induced_relativization)
next
fix ℋ 𝒦
assume *: "ℋ ⊲ homology_group p X" "𝒦 ⊲ homology_group p X"
"ℋ ∩ 𝒦 ⊆ {𝟭⇘homology_group p X⇙}"
"ℋ <#>⇘homology_group p X⇙ 𝒦 = carrier (homology_group p X)"
"hom_induced p (subtopology X S) {} X {} id
∈ Group.iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group p X) ℋ)"
"hom_induced p X {} X S id
∈ Group.iso (subgroup_generated (homology_group p X) 𝒦) (relative_homology_group p X S)"
show "thesis"
proof (rule that)
show "(λ(x, y). x ⊗⇘homology_group p X⇙ y)
∈ iso (subgroup_generated (homology_group p X) ℋ ×× subgroup_generated (homology_group p X) 𝒦)
(homology_group p X)"
using *
by (simp add: group_disjoint_sum.iso_group_mul normal_def group_disjoint_sum_def)
qed (use * in ‹auto simp: normal_def›)
qed
qed
lemma isomorphic_group_homology_group_prod_retract:
assumes "S = {} ∨ S retract_of_space X"
shows "homology_group p X ≅ homology_group p (subtopology X S) ×× relative_homology_group p X S"
(is "?lhs ≅ ?rhs")
proof -
obtain ℋ 𝒦 where
"subgroup ℋ (homology_group p X)"
"subgroup 𝒦 (homology_group p X)"
and 1: "(λ(x, y). x ⊗⇘homology_group p X⇙ y)
∈ iso (DirProd (subgroup_generated (homology_group p X) ℋ) (subgroup_generated (homology_group p X) 𝒦))
(homology_group p X)"
"(hom_induced p (subtopology X S) {} X {} id)
∈ iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group p X) ℋ)"
"(hom_induced p X {} X S id)
∈ iso (subgroup_generated (homology_group p X) 𝒦) (relative_homology_group p X S)"
using group_isomorphisms_homology_group_prod_retract [OF assms] by blast
have "?lhs ≅ subgroup_generated (homology_group p X) ℋ ×× subgroup_generated (homology_group p X) 𝒦"
by (meson DirProd_group 1 abelian_homology_group comm_group_def group.abelian_subgroup_generated group.iso_sym is_isoI)
also have "… ≅ ?rhs"
by (meson "1"(2) "1"(3) abelian_homology_group comm_group_def group.DirProd_iso_trans group.abelian_subgroup_generated group.iso_sym is_isoI)
finally show ?thesis .
qed
lemma homology_additivity_explicit:
assumes "openin X S" "openin X T" "disjnt S T" and SUT: "S ∪ T = topspace X"
shows "(λ(a,b).(hom_induced p (subtopology X S) {} X {} id a)
⊗⇘homology_group p X⇙
(hom_induced p (subtopology X T) {} X {} id b))
∈ iso (DirProd (homology_group p (subtopology X S)) (homology_group p (subtopology X T)))
(homology_group p X)"
proof -
have "closedin X S" "closedin X T"
using assms Un_commute disjnt_sym
by (metis Diff_cancel Diff_triv Un_Diff disjnt_def openin_closedin_eq sup_bot.right_neutral)+
with ‹openin X S› ‹openin X T› have SS: "X closure_of S ⊆ X interior_of S" and TT: "X closure_of T ⊆ X interior_of T"
by (simp_all add: closure_of_closedin interior_of_openin)
have [simp]: "S ∪ T - T = S" "S ∪ T - S = T"
using ‹disjnt S T›
by (auto simp: Diff_triv Un_Diff disjnt_def)
let ?f = "hom_induced p X {} X T id"
let ?g = "hom_induced p X {} X S id"
let ?h = "hom_induced p (subtopology X S) {} X T id"
let ?i = "hom_induced p (subtopology X S) {} X {} id"
let ?j = "hom_induced p (subtopology X T) {} X {} id"
let ?k = "hom_induced p (subtopology X T) {} X S id"
let ?A = "homology_group p (subtopology X S)"
let ?B = "homology_group p (subtopology X T)"
let ?C = "relative_homology_group p X T"
let ?D = "relative_homology_group p X S"
let ?G = "homology_group p X"
have h: "?h ∈ iso ?A ?C" and k: "?k ∈ iso ?B ?D"
using homology_excision_axiom [OF TT, of "S ∪ T" p]
using homology_excision_axiom [OF SS, of "S ∪ T" p]
by auto (simp_all add: SUT)
have 1: "⋀x. (hom_induced p X {} X T id ∘ hom_induced p (subtopology X S) {} X {} id) x
= hom_induced p (subtopology X S) {} X T id x"
by (simp flip: hom_induced_compose)
have 2: "⋀x. (hom_induced p X {} X S id ∘ hom_induced p (subtopology X T) {} X {} id) x
= hom_induced p (subtopology X T) {} X S id x"
by (simp flip: hom_induced_compose)
show ?thesis
using exact_sequence_sum_lemma
[OF abelian_homology_group h k homology_exactness_axiom_3 homology_exactness_axiom_3] 1 2
by auto
qed
subsection‹Generalize exact homology sequence to triples›
definition hom_relboundary :: "[int,'a topology,'a set,'a set,'a chain set] ⇒ 'a chain set"
where
"hom_relboundary p X S T =
hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id ∘
hom_boundary p X S"
lemma group_homomorphism_hom_relboundary:
"hom_relboundary p X S T
∈ hom (relative_homology_group p X S) (relative_homology_group (p-1) (subtopology X S) T)"
unfolding hom_relboundary_def
proof (rule hom_compose)
show "hom_boundary p X S ∈ hom (relative_homology_group p X S) (homology_group(p-1) (subtopology X S))"
by (simp add: hom_boundary_hom)
show "hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id
∈ hom (homology_group(p-1) (subtopology X S)) (relative_homology_group (p-1) (subtopology X S) T)"
by (simp add: hom_induced_hom)
qed
lemma hom_relboundary:
"hom_relboundary p X S T c ∈ carrier (relative_homology_group (p-1) (subtopology X S) T)"
by (simp add: hom_relboundary_def hom_induced_carrier)
lemma hom_relboundary_empty: "hom_relboundary p X S {} = hom_boundary p X S"
by (simp add: ext hom_boundary_carrier hom_induced_id hom_relboundary_def)
lemma naturality_hom_induced_relboundary:
assumes "continuous_map X Y f" "f ` S ⊆ U" "f ` T ⊆ V"
shows "hom_relboundary p Y U V ∘
hom_induced p X S Y (U) f =
hom_induced (p-1) (subtopology X S) T (subtopology Y U) V f ∘
hom_relboundary p X S T"
proof -
have [simp]: "continuous_map (subtopology X S) (subtopology Y U) f"
using assms continuous_map_from_subtopology continuous_map_in_subtopology topspace_subtopology by fastforce
have "hom_induced (p-1) (subtopology Y U) {} (subtopology Y U) V id ∘
hom_induced (p-1) (subtopology X S) {} (subtopology Y U) {} f
= hom_induced (p-1) (subtopology X S) T (subtopology Y U) V f ∘
hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id"
using assms by (simp flip: hom_induced_compose)
with assms show ?thesis
by (metis (no_types, lifting) fun.map_comp hom_relboundary_def naturality_hom_induced)
qed
proposition homology_exactness_triple_1:
assumes "T ⊆ S"
shows "exact_seq ([relative_homology_group(p-1) (subtopology X S) T,
relative_homology_group p X S,
relative_homology_group p X T],
[hom_relboundary p X S T, hom_induced p X T X S id])"
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])")
proof -
have iTS: "id ` T ⊆ S" and [simp]: "S ∩ T = T"
using assms by auto
have "?h2 B ∈ kernel ?G2 ?G1 ?h1" for B
proof -
have "hom_boundary p X T B ∈ carrier (relative_homology_group (p-1) (subtopology X T) {})"
by (metis (no_types) hom_boundary)
then have *: "hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id
(hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id
(hom_boundary p X T B))
= 𝟭⇘?G1⇙"
using homology_exactness_axiom_3 [of "p-1" "subtopology X S" T]
by (auto simp: subtopology_subtopology kernel_def)
show ?thesis
using naturality_hom_induced [OF continuous_map_id iTS]
by (smt (verit, best) * comp_apply hom_induced_carrier hom_relboundary_def kernel_def mem_Collect_eq)
qed
moreover have "B ∈ ?h2 ` carrier ?G3" if "B ∈ kernel ?G2 ?G1 ?h1" for B
proof -
have Bcarr: "B ∈ carrier ?G2"
and Beq: "?h1 B = 𝟭⇘?G1⇙"
using that by (auto simp: kernel_def)
have "∃A' ∈ carrier (homology_group (p-1) (subtopology X T)). hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id A' = A"
if "A ∈ carrier (homology_group (p-1) (subtopology X S))"
"hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id A =
𝟭⇘?G1⇙" for A
using homology_exactness_axiom_3 [of "p-1" "subtopology X S" T] that
by (simp add: kernel_def subtopology_subtopology image_iff set_eq_iff) meson
then obtain C where Ccarr: "C ∈ carrier (homology_group (p-1) (subtopology X T))"
and Ceq: "hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id C = hom_boundary p X S B"
using Beq by (simp add: hom_relboundary_def) (metis hom_boundary_carrier)
let ?hi_XT = "hom_induced (p-1) (subtopology X T) {} X {} id"
have "?hi_XT
= hom_induced (p-1) (subtopology X S) {} X {} id
∘ (hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id)"
by (metis assms comp_id continuous_map_id_subt hom_induced_compose_empty inf.absorb_iff2 subtopology_subtopology)
then have "?hi_XT C
= hom_induced (p-1) (subtopology X S) {} X {} id (hom_boundary p X S B)"
by (simp add: Ceq)
also have eq: "… = 𝟭⇘homology_group (p-1) X⇙"
using homology_exactness_axiom_2 [of p X S] Bcarr by (auto simp: kernel_def)
finally have "?hi_XT C = 𝟭⇘homology_group (p-1) X⇙" .
then obtain D where Dcarr: "D ∈ carrier ?G3" and Deq: "hom_boundary p X T D = C"
using homology_exactness_axiom_2 [of p X T] Ccarr
by (auto simp: kernel_def image_iff set_eq_iff) meson
interpret hb: group_hom "?G2" "homology_group (p-1) (subtopology X S)"
"hom_boundary p X S"
using hom_boundary_hom group_hom_axioms_def group_hom_def by fastforce
let ?A = "B ⊗⇘?G2⇙ inv⇘?G2⇙ ?h2 D"
have "∃A' ∈ carrier (homology_group p X). hom_induced p X {} X S id A' = A"
if "A ∈ carrier ?G2"
"hom_boundary p X S A = one (homology_group (p-1) (subtopology X S))" for A
using that homology_exactness_axiom_1 [of p X S]
by (simp add: kernel_def subtopology_subtopology image_iff set_eq_iff) meson
moreover
have "?A ∈ carrier ?G2"
by (simp add: Bcarr abelian_relative_homology_group comm_groupE(1) hom_induced_carrier)
moreover have "hom_boundary p X S (?h2 D) = hom_boundary p X S B"
by (metis (mono_tags, lifting) Ceq Deq comp_eq_dest continuous_map_id iTS naturality_hom_induced)
then have "hom_boundary p X S ?A = one (homology_group (p-1) (subtopology X S))"
by (simp add: hom_induced_carrier Bcarr)
ultimately obtain W where Wcarr: "W ∈ carrier (homology_group p X)"
and Weq: "hom_induced p X {} X S id W = ?A"
by blast
let ?W = "D ⊗⇘?G3⇙ hom_induced p X {} X T id W"
show ?thesis
proof
interpret comm_group "?G2"
by (rule abelian_relative_homology_group)
have "hom_induced p X T X S id (hom_induced p X {} X T id W) = hom_induced p X {} X S id W"
by (simp add: assms hom_induced_compose')
then have "B = (?h2 ∘ hom_induced p X {} X T id) W ⊗⇘?G2⇙ ?h2 D"
by (simp add: Bcarr Weq hb.G.m_assoc hom_induced_carrier)
then show "B = ?h2 ?W"
by (metis hom_mult [OF hom_induced_hom] Dcarr comp_apply hom_induced_carrier m_comm)
show "?W ∈ carrier ?G3"
by (simp add: Dcarr comm_groupE(1) hom_induced_carrier)
qed
qed
ultimately show ?thesis
by (auto simp: group_hom_def group_hom_axioms_def hom_induced_hom group_homomorphism_hom_relboundary)
qed
proposition homology_exactness_triple_2:
assumes "T ⊆ S"
shows "exact_seq ([relative_homology_group(p-1) X T,
relative_homology_group(p-1) (subtopology X S) T,
relative_homology_group p X S],
[hom_induced (p-1) (subtopology X S) T X T id, hom_relboundary p X S T])"
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])")
proof -
let ?H2 = "homology_group (p-1) (subtopology X S)"
have iTS: "id ` T ⊆ S" and [simp]: "S ∩ T = T"
using assms by auto
have "?h2 C ∈ kernel ?G2 ?G1 ?h1" for C
proof -
have "?h1 (?h2 C)
= (hom_induced (p-1) X {} X T id ∘ hom_induced (p-1) (subtopology X S) {} X {} id ∘ hom_boundary p X S) C"
unfolding hom_relboundary_def
by (metis (no_types, lifting) comp_apply continuous_map_id continuous_map_id_subt empty_subsetI hom_induced_compose id_apply image_empty image_id order_refl)
also have "… = 𝟭⇘?G1⇙"
proof -
have *: "hom_boundary p X S C ∈ carrier ?H2"
by (simp add: hom_boundary_carrier)
moreover have "hom_boundary p X S C ∈ hom_boundary p X S ` carrier ?G3"
using homology_exactness_axiom_2 [of p X S] *
apply (simp add: kernel_def set_eq_iff)
by (metis group_relative_homology_group hom_boundary_default hom_one image_eqI)
ultimately
have 1: "hom_induced (p-1) (subtopology X S) {} X {} id (hom_boundary p X S C)
= 𝟭⇘homology_group (p-1) X⇙"
using homology_exactness_axiom_2 [of p X S] by (simp add: kernel_def) blast
show ?thesis
by (simp add: 1 hom_one [OF hom_induced_hom])
qed
finally have "?h1 (?h2 C) = 𝟭⇘?G1⇙" .
then show ?thesis
by (simp add: kernel_def hom_relboundary_def hom_induced_carrier)
qed
moreover have "x ∈ ?h2 ` carrier ?G3" if "x ∈ kernel ?G2 ?G1 ?h1" for x
proof -
let ?homX = "hom_induced (p-1) (subtopology X S) {} X {} id"
let ?homXS = "hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id"
have "x ∈ carrier (relative_homology_group (p-1) (subtopology X S) T)"
using that by (simp add: kernel_def)
moreover
have "hom_boundary (p-1) X T ∘ hom_induced (p-1) (subtopology X S) T X T id = hom_boundary (p-1) (subtopology X S) T"
by (metis Int_lower2 ‹S ∩ T = T› continuous_map_id_subt hom_relboundary_def hom_relboundary_empty id_apply image_id naturality_hom_induced subtopology_subtopology)
then have "hom_boundary (p-1) (subtopology X S) T x = 𝟭⇘homology_group (p - 2) (subtopology (subtopology X S) T)⇙"
using naturality_hom_induced [of "subtopology X S" X id T T "p-1"] that
hom_one [OF hom_boundary_hom group_relative_homology_group group_relative_homology_group, of "p-1" X T]
by (smt (verit) assms comp_apply inf.absorb_iff2 kernel_def mem_Collect_eq subtopology_subtopology)
ultimately
obtain y where ycarr: "y ∈ carrier ?H2"
and yeq: "?homXS y = x"
using homology_exactness_axiom_1 [of "p-1" "subtopology X S" T]
by (simp add: kernel_def image_def set_eq_iff) meson
have "?homX y ∈ carrier (homology_group (p-1) X)"
by (simp add: hom_induced_carrier)
moreover
have "(hom_induced (p-1) X {} X T id ∘ ?homX) y = 𝟭⇘relative_homology_group (p-1) X T⇙"
using that
apply (simp add: kernel_def flip: hom_induced_compose)
using hom_induced_compose [of "subtopology X S" "subtopology X S" id "{}" T X id T "p-1"] yeq
by auto
then have "hom_induced (p-1) X {} X T id (?homX y) = 𝟭⇘relative_homology_group (p-1) X T⇙"
by simp
ultimately obtain z where zcarr: "z ∈ carrier (homology_group (p-1) (subtopology X T))"
and zeq: "hom_induced (p-1) (subtopology X T) {} X {} id z = ?homX y"
using homology_exactness_axiom_3 [of "p-1" X T]
by (auto simp: kernel_def dest!: equalityD1 [of "Collect _"])
have *: "⋀t. ⟦t ∈ carrier ?H2;
hom_induced (p-1) (subtopology X S) {} X {} id t = 𝟭⇘homology_group (p-1) X⇙⟧
⟹ t ∈ hom_boundary p X S ` carrier ?G3"
using homology_exactness_axiom_2 [of p X S]
by (auto simp: kernel_def dest!: equalityD1 [of "Collect _"])
interpret comm_group "?H2"
by (rule abelian_relative_homology_group)
interpret gh: group_hom ?H2 "homology_group (p-1) X" "hom_induced (p-1) (subtopology X S) {} X {} id"
by (meson group_hom_axioms_def group_hom_def group_relative_homology_group hom_induced)
let ?yz = "y ⊗⇘?H2⇙ inv⇘?H2⇙ hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id z"
have yzcarr: "?yz ∈ carrier ?H2"
by (simp add: hom_induced_carrier ycarr)
have "hom_induced (p-1) (subtopology X S) {} X {} id y =
hom_induced (p-1) (subtopology X S) {} X {} id
(hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id z)"
by (metis assms continuous_map_id_subt hom_induced_compose_empty inf.absorb_iff2 o_apply o_id subtopology_subtopology zeq)
then have yzeq: "hom_induced (p-1) (subtopology X S) {} X {} id ?yz = 𝟭⇘homology_group (p-1) X⇙"
by (simp add: hom_induced_carrier ycarr gh.inv_solve_right')
obtain w where wcarr: "w ∈ carrier ?G3" and weq: "hom_boundary p X S w = ?yz"
using * [OF yzcarr yzeq] by blast
interpret gh2: group_hom ?H2 ?G2 ?homXS
by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom)
have "?homXS (hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id z)
= 𝟭⇘relative_homology_group (p-1) (subtopology X S) T⇙"
using homology_exactness_axiom_3 [of "p-1" "subtopology X S" T] zcarr
by (auto simp: kernel_def subtopology_subtopology)
then show ?thesis
apply (rule_tac x=w in image_eqI)
apply (simp_all add: hom_relboundary_def weq wcarr)
by (metis gh2.hom_inv gh2.hom_mult gh2.inv_one gh2.r_one group.inv_closed group_l_invI hom_induced_carrier l_inv_ex ycarr yeq)
qed
ultimately show ?thesis
by (auto simp: group_hom_axioms_def group_hom_def group_homomorphism_hom_relboundary hom_induced_hom)
qed
proposition homology_exactness_triple_3:
assumes "T ⊆ S"
shows "exact_seq ([relative_homology_group p X S,
relative_homology_group p X T,
relative_homology_group p (subtopology X S) T],
[hom_induced p X T X S id, hom_induced p (subtopology X S) T X T id])"
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])")
proof -
have iTS: "id ` T ⊆ S" and [simp]: "S ∩ T = T"
using assms by auto
have 1: "?h2 x ∈ kernel ?G2 ?G1 ?h1" for x
proof -
have "?h1 (?h2 x)
= (hom_induced p (subtopology X S) S X S id ∘
hom_induced p (subtopology X S) T (subtopology X S) S id) x"
by (metis comp_eq_dest_lhs continuous_map_id continuous_map_id_subt hom_induced_compose iTS id_apply image_subsetI)
also have "… = 𝟭⇘relative_homology_group p X S⇙"
proof -
have "trivial_group (relative_homology_group p (subtopology X S) S)"
using trivial_relative_homology_group_topspace [of p "subtopology X S"]
by (metis inf_right_idem relative_homology_group_restrict topspace_subtopology)
then have 1: "hom_induced p (subtopology X S) T (subtopology X S) S id x
= 𝟭⇘relative_homology_group p (subtopology X S) S⇙"
using hom_induced_carrier by (fastforce simp add: trivial_group_def)
show ?thesis
by (simp add: 1 hom_one [OF hom_induced_hom])
qed
finally have "?h1 (?h2 x) = 𝟭⇘relative_homology_group p X S⇙" .
then show ?thesis
by (simp add: hom_induced_carrier kernel_def)
qed
moreover have "x ∈ ?h2 ` carrier ?G3" if x: "x ∈ kernel ?G2 ?G1 ?h1" for x
proof -
have xcarr: "x ∈ carrier ?G2"
using that by (auto simp: kernel_def)
interpret G2: comm_group "?G2"
by (rule abelian_relative_homology_group)
let ?b = "hom_boundary p X T x"
have bcarr: "?b ∈ carrier(homology_group(p-1) (subtopology X T))"
by (simp add: hom_boundary_carrier)
have "hom_boundary p X S (hom_induced p X T X S id x)
= hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id
(hom_boundary p X T x)"
using naturality_hom_induced [of X X id T S p] by (simp add: assms o_def) meson
with bcarr have "hom_boundary p X T x ∈ hom_boundary p (subtopology X S) T ` carrier ?G3"
using homology_exactness_axiom_2 [of p "subtopology X S" T] x
apply (simp add: kernel_def set_eq_iff subtopology_subtopology)
by (metis group_relative_homology_group hom_boundary_hom hom_one set_eq_iff)
then obtain u where ucarr: "u ∈ carrier ?G3"
and ueq: "hom_boundary p X T x = hom_boundary p (subtopology X S) T u"
by (auto simp: kernel_def set_eq_iff subtopology_subtopology hom_boundary_carrier)
define y where "y = x ⊗⇘?G2⇙ inv⇘?G2⇙ ?h2 u"
have ycarr: "y ∈ carrier ?G2"
using x by (simp add: y_def kernel_def hom_induced_carrier)
interpret hb: group_hom ?G2 "homology_group (p-1) (subtopology X T)" "hom_boundary p X T"
by (simp add: group_hom_axioms_def group_hom_def hom_boundary_hom)
have yyy: "hom_boundary p X T y = 𝟭⇘homology_group (p-1) (subtopology X T)⇙"
apply (simp add: y_def bcarr xcarr hom_induced_carrier hom_boundary_carrier hb.inv_solve_right')
using naturality_hom_induced [of concl: p X T "subtopology X S" T id]
by (smt (verit, best) ‹S ∩ T = T› bcarr comp_eq_dest continuous_map_id_subt hom_induced_id id_apply
image_subset_iff subtopology_subtopology ueq)
then have "y ∈ hom_induced p X {} X T id ` carrier (homology_group p X)"
using homology_exactness_axiom_1 [of p X T] x ycarr by (auto simp: kernel_def)
then obtain z where zcarr: "z ∈ carrier (homology_group p X)"
and zeq: "hom_induced p X {} X T id z = y"
by auto
interpret gh1: group_hom ?G2 ?G1 ?h1
by (meson group_hom_axioms_def group_hom_def group_relative_homology_group hom_induced)
have "hom_induced p X {} X S id z = (hom_induced p X T X S id ∘ hom_induced p X {} X T id) z"
by (simp add: assms flip: hom_induced_compose)
also have "… = 𝟭⇘relative_homology_group p X S⇙"
using x 1 by (simp add: kernel_def zeq y_def)
finally have "hom_induced p X {} X S id z = 𝟭⇘relative_homology_group p X S⇙" .
then have "z ∈ hom_induced p (subtopology X S) {} X {} id `
carrier (homology_group p (subtopology X S))"
using homology_exactness_axiom_3 [of p X S] zcarr by (auto simp: kernel_def)
then obtain w where wcarr: "w ∈ carrier (homology_group p (subtopology X S))"
and weq: "hom_induced p (subtopology X S) {} X {} id w = z"
by blast
let ?u = "hom_induced p (subtopology X S) {} (subtopology X S) T id w ⊗⇘?G3⇙ u"
show ?thesis
proof
have *: "x = z ⊗⇘?G2⇙ u"
if "z = x ⊗⇘?G2⇙ inv⇘?G2⇙ u" "z ∈ carrier ?G2" "u ∈ carrier ?G2" for z u
using that by (simp add: group.inv_solve_right xcarr)
have eq: "?h2 ∘ hom_induced p (subtopology X S) {} (subtopology X S) T id
= hom_induced p X {} X T id ∘ hom_induced p (subtopology X S) {} X {} id"
by (simp flip: hom_induced_compose)
show "x = hom_induced p (subtopology X S) T X T id ?u"
using hom_mult [OF hom_induced_hom] hom_induced_carrier *
by (smt (verit, best) comp_eq_dest eq ucarr weq y_def zeq)
show "?u ∈ carrier (relative_homology_group p (subtopology X S) T)"
by (simp add: abelian_relative_homology_group comm_groupE(1) hom_induced_carrier ucarr)
qed
qed
ultimately show ?thesis
by (auto simp: group_hom_axioms_def group_hom_def hom_induced_hom)
qed
end