Theory Groebner_Examples
section ‹Groebner Basis Examples›
theory Groebner_Examples
imports Main
begin
subsection ‹Basic examples›
lemma
fixes x :: int
shows "x ^ 3 = x ^ 3"
apply (tactic ‹ALLGOALS (CONVERSION
(Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer.semiring_normalize_conv \<^context>))))›)
by (rule refl)
lemma
fixes x :: int
shows "(x - (-2))^5 = x ^ 5 + (10 * x ^ 4 + (40 * x ^ 3 + (80 * x⇧2 + (80 * x + 32))))"
apply (tactic ‹ALLGOALS (CONVERSION
(Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer.semiring_normalize_conv \<^context>))))›)
by (rule refl)
schematic_goal
fixes x :: int
shows "(x - (-2))^5 * (y - 78) ^ 8 = ?X"
apply (tactic ‹ALLGOALS (CONVERSION
(Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer.semiring_normalize_conv \<^context>))))›)
by (rule refl)
lemma "((-3) ^ (Suc (Suc (Suc 0)))) == (X::'a::{comm_ring_1})"
apply (simp only: power_Suc power_0)
apply (simp only: semiring_norm)
oops
lemma "((x::int) + y)^3 - 1 = (x - z)^2 - 10 ⟹ x = z + 3 ⟹ x = - y"
by algebra
lemma "(4::nat) + 4 = 3 + 5"
by algebra
lemma "(4::int) + 0 = 4"
apply algebra?
by simp
lemma
assumes "a * x⇧2 + b * x + c = (0::int)" and "d * x⇧2 + e * x + f = 0"
shows "d⇧2 * c⇧2 - 2 * d * c * a * f + a⇧2 * f⇧2 - e * d * b * c - e * b * a * f +
a * e⇧2 * c + f * d * b⇧2 = 0"
using assms by algebra
lemma "(x::int)^3 - x^2 - 5*x - 3 = 0 ⟷ (x = 3 ∨ x = -1)"
by algebra
theorem "x* (x⇧2 - x - 5) - 3 = (0::int) ⟷ (x = 3 ∨ x = -1)"
by algebra
lemma
fixes x::"'a::idom"
shows "x⇧2*y = x⇧2 & x*y⇧2 = y⇧2 ⟷ x = 1 & y = 1 | x = 0 & y = 0"
by algebra
subsection ‹Lemmas for Lagrange's theorem›
definition
sq :: "'a::times => 'a" where
"sq x == x*x"
lemma
fixes x1 :: "'a::{idom}"
shows
"(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
sq (x1*y1 - x2*y2 - x3*y3 - x4*y4) +
sq (x1*y2 + x2*y1 + x3*y4 - x4*y3) +
sq (x1*y3 - x2*y4 + x3*y1 + x4*y2) +
sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)"
by (algebra add: sq_def)
lemma
fixes p1 :: "'a::{idom}"
shows
"(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) *
(sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
= sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) +
sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
by (algebra add: sq_def)
subsection ‹Colinearity is invariant by rotation›
type_synonym point = "int × int"
definition collinear ::"point ⇒ point ⇒ point ⇒ bool" where
"collinear ≡ λ(Ax,Ay) (Bx,By) (Cx,Cy).
((Ax - Bx) * (By - Cy) = (Ay - By) * (Bx - Cx))"
lemma collinear_inv_rotation:
assumes "collinear (Ax, Ay) (Bx, By) (Cx, Cy)" and "c⇧2 + s⇧2 = 1"
shows "collinear (Ax * c - Ay * s, Ay * c + Ax * s)
(Bx * c - By * s, By * c + Bx * s) (Cx * c - Cy * s, Cy * c + Cx * s)"
using assms
by (algebra add: collinear_def split_def fst_conv snd_conv)
lemma "∃(d::int). a*y - a*x = n*d ⟹ ∃u v. a*u + n*v = 1 ⟹ ∃e. y - x = n*e"
by algebra
end