Theory Example_Metric
theory Example_Metric
imports "HOL-Analysis.Metric_Arith" "HOL-Eisbach.Eisbach_Tools"
begin
text ‹An Eisbach implementation of the method @{method metric}.
Slower than the Isabelle/ML implementation but arguably more readable.›
declare [[argo_timeout = 20]]
method dist_refl_sym = simp only: simp_thms dist_commute dist_self
method lin_real_arith uses thms = argo thms
method pre_arith uses argo_thms =
(simp only: metric_pre_arith)?;
lin_real_arith thms: argo_thms
method elim_sup =
(simp only: image_insert image_empty)?;
dist_refl_sym?;
(simp only: algebra_simps simp_thms)?;
(simp only: simp_thms Sup_insert_insert cSup_singleton)?;
(simp only: simp_thms real_abs_dist)?
method ball_simp = simp only: Set.ball_simps(5,7)
lemmas maxdist_thm = maxdist_thm
method rewr_maxdist for ps::"'a::metric_space set" uses pos_thms =
match conclusion in
"?P (dist x y)" (cut) for x y::'a ⇒ ‹
simp only: maxdist_thm[where s=ps and x=x and y=y]
simp_thms finite.emptyI finite_insert empty_iff insert_iff;
rewr_maxdist ps pos_thms: pos_thms zero_le_dist[of x y]›
¦ _ ⇒ ‹
ball_simp?;
dist_refl_sym?;
elim_sup?;
pre_arith argo_thms: pos_thms›
lemmas metric_eq_thm = metric_eq_thm
method rewr_metric_eq for ps::"'a::metric_space set" =
match conclusion in
"?P (x = y)" (cut) for x y::'a ⇒ ‹
simp only: metric_eq_thm[where s=ps and x=x and y=y] simp_thms empty_iff insert_iff;
rewr_metric_eq ps›
¦ _ ⇒ ‹-›
method find_points for ps::"'a::metric_space set" and t::bool =
match (t) in
"Q p" (cut) for p::'a and Q::"'a⇒bool" ⇒ ‹
find_points ‹insert p ps› ‹∀p. Q p››
¦ _ ⇒ ‹
rewr_metric_eq ps;
rewr_maxdist ps›
method basic_metric_arith for p::"'a::metric_space" =
dist_refl_sym?;
match conclusion in
"Q q" (cut) for q::'a and Q ⇒ ‹
find_points ‹{q}› ‹∀p. Q p››
¦ _ ⇒ ‹
rewr_metric_eq ‹{}::'a set›;
rewr_maxdist ‹{}::'a set››
method elim_exists_loop for p::"'a::metric_space" =
match conclusion in
"∃q::'a. ?P q r" for r::'a ⇒ ‹
print_term r;
rule exI[of _ r];
elim_exists_loop p›
¦ "∀x. ?P x" (cut) ⇒ ‹
rule allI;
elim_exists_loop p›
¦ _ ⇒ ‹-›
method elim_exists for p::"'a::metric_space" =
elim_exists_loop p;
basic_metric_arith p
method find_type =
match conclusion in
"∃x::'a::metric_space. ?P x" ⇒ ‹
match conclusion in
"?Q x" (cut) for x::"'a::metric_space" ⇒ ‹elim_exists x›
¦ _ ⇒ ‹
rule exI;
match conclusion in "?Q x" (cut) for x::"'a::metric_space" ⇒ ‹elim_exists x›››
¦ "?P (λy. (dist x y))" (cut) for x::"'a::metric_space" ⇒ ‹elim_exists x›
¦ "?P (λx. (dist x y))" (cut) for y::"'a::metric_space" ⇒ ‹elim_exists y›
¦ "?P (λy. (x = y))" (cut) for x::"'a::metric_space" ⇒ ‹elim_exists x›
¦ "?P (λx. (x = y))" (cut) for y::"'a::metric_space" ⇒ ‹elim_exists y›
¦ _ ⇒ ‹
rule exI;
find_type›
method metric_eisbach =
(simp only: metric_unfold)?;
(atomize (full))?;
(simp only: metric_prenex)?;
(simp only: metric_nnf)?;
((rule allI)+)?;
match conclusion in _ ⇒ find_type
subsection ‹examples›
lemma "∃x::'a::metric_space. x=x"
by metric_eisbach
lemma "∀(x::'a::metric_space). ∃y. x = y"
by metric_eisbach
lemma "∃x y. dist x y = 0"
by metric_eisbach
lemma "∃y. dist x y = 0"
by metric_eisbach
lemma "0 = dist x y ⟹ x = y"
by metric_eisbach
lemma "x ≠ y ⟹ dist x y ≠ 0"
by metric_eisbach
lemma "∃y. dist x y ≠ 1"
by metric_eisbach
lemma "x = y ⟷ dist x x = dist y x ∧ dist x y = dist y y"
by metric_eisbach
lemma "dist a b ≠ dist a c ⟹ b ≠ c"
by metric_eisbach
lemma "dist y x + c ≥ c"
by metric_eisbach
lemma "dist x y + dist x z ≥ 0"
by metric_eisbach
lemma "dist x y ≥ v ⟹ dist x y + dist (a::'a) b ≥ v" for x::"('a::metric_space)"
by metric_eisbach
lemma "dist x y < 0 ⟶ P"
by metric_eisbach
text ‹reasoning with the triangle inequality›
lemma "dist a d ≤ dist a b + dist b c + dist c d"
by metric_eisbach
lemma "dist a e ≤ dist a b + dist b c + dist c d + dist d e"
by metric_eisbach
lemma "max (dist x y) ¦dist x z - dist z y¦ = dist x y"
by metric_eisbach
lemma
"dist w x < e/3 ⟹ dist x y < e/3 ⟹ dist y z < e/3 ⟹ dist w x < e"
by metric_eisbach
lemma "dist w x < e/4 ⟹ dist x y < e/4 ⟹ dist y z < e/2 ⟹ dist w z < e"
by metric_eisbach
lemma "dist x y = r / 2 ⟹ (∀z. dist x z < r / 4 ⟶ dist y z ≤ 3 * r / 4)"
by metric_eisbach
lemma "∃x. ∀r≤0. ∃z. dist x z ≥ r"
by metric_eisbach
lemma "⋀a r x y. dist x a + dist a y = r ⟹ ∀z. r ≤ dist x z + dist z y ⟹ dist x y = r"
by metric_eisbach
end