Theory Dense_Linear_Order_Ex

(* Author:     Amine Chaieb, TU Muenchen *)

section ‹Examples for Ferrante and Rackoff's quantifier elimination procedure›

theory Dense_Linear_Order_Ex
imports "../Dense_Linear_Order"
begin

lemma "(y::'a::linordered_field) < 2. x + 3* y < 0  x - y > 0"
  by ferrack

lemma "¬ (x (y::'a::linordered_field). x < y  10 * x < 11 * y)"
  by ferrack

lemma "(x::'a::linordered_field) y. x < y  10 * (x + 5 * y + -1) < 60 * y"
  by ferrack

lemma "(x::'a::linordered_field) y. x  y  x < y"
  by ferrack

lemma "(x::'a::linordered_field) y. x  y  10 * x  9 * y  10 * x < y  x < y"
  by ferrack

lemma "(x::'a::linordered_field) y. x  y  5 * x  y  500 * x  100 * y"
  by ferrack

lemma "x::'a::linordered_field. y::'a::linordered_field. 4 * x + 3 * y  0  4 * x + 3 * y  -1"
  by ferrack

lemma "(x::'a::linordered_field) < 0. (y::'a::linordered_field) > 0. 7 * x + y > 0  x - y  9"
  by ferrack

lemma "x::'a::linordered_field. 0 < x  x < 1  (y > 1. x + y  1)"
  by ferrack

lemma "x. y::'a::linordered_field. y < 2  2 * (y - x)  0"
  by ferrack

lemma "x::'a::linordered_field. x < 10  x > 20  (y. y  0  y  10  x + y = 20)"
  by ferrack

lemma "(x::'a::linordered_field) y z. x + y < z  y  z  x < 0"
  by ferrack

lemma "(x::'a::linordered_field) y z. x + 7 * y < 5 * z  5 * y  7 * z  x < 0"
  by ferrack

lemma "(x::'a::linordered_field) y z. ¦x + y¦  z  ¦z¦ = z"
  by ferrack

lemma "(x::'a::linordered_field) y z. x + 7 * y - 5 * z < 0  5 * y + 7 * z + 3 * x < 0"
  by ferrack

lemma "(x::'a::linordered_field) y z.
  (¦5 * x + 3 * y + z¦  5 * x + 3 * y + z  ¦5 * x + 3 * y + z¦  - (5 * x + 3 * y + z)) 
  (¦5 * x + 3 * y + z¦  5 * x + 3 * y + z  ¦5 * x + 3 * y + z¦  - (5 * x + 3 * y + z))"
  by ferrack

lemma "(x::'a::linordered_field) y. x < y  (z>0. x + z = y)"
  by ferrack

lemma "(x::'a::linordered_field) y. x < y  (z>0. x + z = y)"
  by ferrack

lemma "(x::'a::linordered_field) y. z>0. ¦x - y¦  z"
  by ferrack

lemma "(x::'a::linordered_field) y. z<0. (z < x  z  y)  (z > y  z  x)"
  by ferrack

lemma "(x::'a::linordered_field) y. z0. ¦3 * x + 7 * y¦  2 * z + 1"
  by ferrack

lemma "(x::'a::linordered_field) y. z<0. (z < x  z  y)  (z > y  z  x)"
  by ferrack

lemma "(x::'a::linordered_field) > 0. y. z. 13 * ¦z¦  ¦12 * y - x¦  5 * x - 3 * ¦y¦  7 * z"
  by ferrack

lemma "x::'a::linordered_field.
  ¦4 * x + 17¦ < 4  (y. ¦x * 34 - 34 * y - 9¦  0  (z. 5 * x - 3 * ¦y¦  7 * z))"
  by ferrack

lemma "x::'a::linordered_field. y > ¦23 * x - 9¦. z > ¦3 * y - 19 * ¦x¦¦. x + z > 2 * y"
  by ferrack

lemma "x::'a::linordered_field.
  y < ¦3 * x - 1¦. z  3 * ¦x¦ - 1. ¦12 * x - 13 * y + 19 * z¦ > ¦23 * x¦"
  by ferrack

lemma "x::'a::linordered_field. ¦x¦ < 100  (y > x. (z < 2 * y - x. 5 * x - 3 * y  7 * z))"
  by ferrack

lemma "(x::'a::linordered_field) y z w.
  7 * x < 3 * y  5 * y < 7 * z  z < 2 * w  7 * (2 * w - x) > 2 * y"
  by ferrack

lemma "(x::'a::linordered_field) y z w. 5 * x + 3 * z - 17 * w + ¦y - 8 * x + z¦  89"
  by ferrack

lemma "(x::'a::linordered_field) y z w.
  5 * x + 3 * z - 17 * w + 7 * (y - 8 * x + z)  max y (7 * z - x + w)"
  by ferrack

lemma "(x::'a::linordered_field) y z w.
  min (5 * x + 3 * z) (17 * w) + 5 * ¦y - 8 * x + z¦  max y (7 * z - x + w)"
  by ferrack

lemma "(x::'a::linordered_field) y z. w  x + y + z. w  ¦x¦ + ¦y¦ + ¦z¦"
  by ferrack

lemma "¬ (x::'a::linordered_field. y z w.
  3 * x + z * 4 = 3 * y  x + y < z  x > w  3 * x < w + y)"
  by ferrack

lemma "(x::'a::linordered_field) y. z w. ¦x - y¦ = z - w  z * 1234 < 233 * x  w  y"
  by ferrack

lemma "x::'a::linordered_field. y z w.
  min (5 * x + 3 * z) (17 * w) + 5 * ¦y - 8 * x + z¦  max y (7 * z - x + w)"
  by ferrack

lemma "(x::'a::linordered_field) y z. w  ¦x + y + z¦. w  ¦x¦ + ¦y¦ + ¦z¦"
  by ferrack

lemma "z. (x::'a::linordered_field) y. w  x + y + z. w  ¦x¦ + ¦y¦ + ¦z¦"
  by ferrack

lemma "z. (x::'a::linordered_field) < ¦z¦. y w. x < y  x < z  x > w  3 * x < w + y"
  by ferrack

lemma "(x::'a::linordered_field) y. z. w. ¦x - y¦ = ¦z - w¦  z < x  w  y"
  by ferrack

lemma "y. x::'a::linordered_field. z w.
  min (5 * x + 3 * z) (17 * w) + 5 * ¦y - 8 * x + z¦  max y (7 * z - x + w)"
  by ferrack

lemma "(x::'a::linordered_field) z. w  13 * x - 4 * z. y. w  ¦x¦ + ¦y¦ + z"
  by ferrack

lemma "x::'a::linordered_field. y < x. z > x + y.
  w. 5 * w + 10 * x - z  y  w + 7 * x + 3 * z  2 * y"
  by ferrack

lemma "x::'a::linordered_field. y. z > y.
  w. w < 13  w + 10 * x - z  y  5 * w + 7 * x + 13 * z  2 * y"
  by ferrack

lemma "(x::'a::linordered_field) y z w.
  min (5 * x + 3 * z) (17 * w) + 5 * ¦y - 8 * x + z¦  max y (7 * z - x + w)"
  by ferrack

lemma "x::'a::linordered_field. y. z>19. y  x + z  (w. ¦y - x¦ < w)"
  by ferrack

lemma "x::'a::linordered_field. y. z>19. y  x + z  (w. ¦x + z¦ < w - y)"
  by ferrack

lemma "x::'a::linordered_field. y.
  ¦y¦  ¦x¦  (z > max x y. w. w  y  w  z  3 * w - z  x + y)"
  by ferrack

end