Theory AList_Upd_Del

(* Author: Tobias Nipkow *)

section ‹Association List Update and Deletion›

theory AList_Upd_Del
imports Sorted_Less
begin

abbreviation "sorted1 ps  sorted(map fst ps)"

text‹Define own map_of› function to avoid pulling in an unknown
amount of lemmas implicitly (via the simpset).›

hide_const (open) map_of

fun map_of :: "('a*'b)list  'a  'b option" where
"map_of [] = (λx. None)" |
"map_of ((a,b)#ps) = (λx. if x=a then Some b else map_of ps x)"

text ‹Updating an association list:›

fun upd_list :: "'a::linorder  'b  ('a*'b) list  ('a*'b) list" where
"upd_list x y [] = [(x,y)]" |
"upd_list x y ((a,b)#ps) =
  (if x < a then (x,y)#(a,b)#ps else
  if x = a then (x,y)#ps else (a,b) # upd_list x y ps)"

fun del_list :: "'a::linorder  ('a*'b)list  ('a*'b)list" where
"del_list x [] = []" |
"del_list x ((a,b)#ps) = (if x = a then ps else (a,b) # del_list x ps)"


subsection ‹Lemmas for constmap_of

lemma map_of_ins_list: "map_of (upd_list x y ps) = (map_of ps)(x := Some y)"
by(induction ps) auto

lemma map_of_append: "map_of (ps @ qs) x =
  (case map_of ps x of None  map_of qs x | Some y  Some y)"
by(induction ps)(auto)

lemma map_of_None: "sorted (x # map fst ps)  map_of ps x = None"
by (induction ps) (fastforce simp: sorted_lems sorted_wrt_Cons)+

lemma map_of_None2: "sorted (map fst ps @ [x])  map_of ps x = None"
by (induction ps) (auto simp: sorted_lems)

lemma map_of_del_list: "sorted1 ps 
  map_of(del_list x ps) = (map_of ps)(x := None)"
by(induction ps) (auto simp: map_of_None sorted_lems fun_eq_iff)

lemma map_of_sorted_Cons: "sorted (a # map fst ps)  x < a 
   map_of ps x = None"
by (simp add: map_of_None sorted_Cons_le)

lemma map_of_sorted_snoc: "sorted (map fst ps @ [a])  a  x 
  map_of ps x = None"
by (simp add: map_of_None2 sorted_snoc_le)

lemmas map_of_sorteds = map_of_sorted_Cons map_of_sorted_snoc
lemmas map_of_simps = sorted_lems map_of_append map_of_sorteds


subsection ‹Lemmas for constupd_list

lemma sorted_upd_list: "sorted1 ps  sorted1 (upd_list x y ps)"
apply(induction ps)
 apply simp
apply(case_tac ps)
 apply auto
done

lemma upd_list_sorted: "sorted1 (ps @ [(a,b)]) 
  upd_list x y (ps @ (a,b) # qs) =
    (if x < a then upd_list x y ps @ (a,b) # qs
    else ps @ upd_list x y ((a,b) # qs))"
by(induction ps) (auto simp: sorted_lems)

text‹In principle, @{thm upd_list_sorted} suffices, but the following two
corollaries speed up proofs.›

corollary upd_list_sorted1: " sorted (map fst ps @ [a]); x < a  
  upd_list x y (ps @ (a,b) # qs) =  upd_list x y ps @ (a,b) # qs"
by (auto simp: upd_list_sorted)

corollary upd_list_sorted2: " sorted (map fst ps @ [a]); a  x  
  upd_list x y (ps @ (a,b) # qs) = ps @ upd_list x y ((a,b) # qs)"
by (auto simp: upd_list_sorted)

lemmas upd_list_simps = sorted_lems upd_list_sorted1 upd_list_sorted2

text‹Splay trees need two additional constupd_list lemmas:›

lemma upd_list_Cons:
  "sorted1 ((x,y) # xs)  upd_list x y xs = (x,y) # xs"
by (induction xs) auto

lemma upd_list_snoc:
  "sorted1 (xs @ [(x,y)])  upd_list x y xs = xs @ [(x,y)]"
by(induction xs) (auto simp add: sorted_mid_iff2)


subsection ‹Lemmas for constdel_list

lemma sorted_del_list: "sorted1 ps  sorted1 (del_list x ps)"
apply(induction ps)
 apply simp
apply(case_tac ps)
apply (auto simp: sorted_Cons_le)
done

lemma del_list_idem: "x  set(map fst xs)  del_list x xs = xs"
by (induct xs) auto

lemma del_list_sorted: "sorted1 (ps @ (a,b) # qs) 
  del_list x (ps @ (a,b) # qs) =
    (if x < a then del_list x ps @ (a,b) # qs
     else ps @ del_list x ((a,b) # qs))"
by(induction ps)
  (fastforce simp: sorted_lems sorted_wrt_Cons intro!: del_list_idem)+

text‹In principle, @{thm del_list_sorted} suffices, but the following
corollaries speed up proofs.›

corollary del_list_sorted1: "sorted1 (xs @ (a,b) # ys)  a  x 
  del_list x (xs @ (a,b) # ys) = xs @ del_list x ((a,b) # ys)"
by (auto simp: del_list_sorted)

lemma del_list_sorted2: "sorted1 (xs @ (a,b) # ys)  x < a 
  del_list x (xs @ (a,b) # ys) = del_list x xs @ (a,b) # ys"
by (auto simp: del_list_sorted)

lemma del_list_sorted3:
  "sorted1 (xs @ (a,a') # ys @ (b,b') # zs)  x < b 
  del_list x (xs @ (a,a') # ys @ (b,b') # zs) = del_list x (xs @ (a,a') # ys) @ (b,b') # zs"
by (auto simp: del_list_sorted sorted_lems)

lemma del_list_sorted4:
  "sorted1 (xs @ (a,a') # ys @ (b,b') # zs @ (c,c') # us)  x < c 
  del_list x (xs @ (a,a') # ys @ (b,b') # zs @ (c,c') # us) = del_list x (xs @ (a,a') # ys @ (b,b') # zs) @ (c,c') # us"
by (auto simp: del_list_sorted sorted_lems)

lemma del_list_sorted5:
  "sorted1 (xs @ (a,a') # ys @ (b,b') # zs @ (c,c') # us @ (d,d') # vs)  x < d 
   del_list x (xs @ (a,a') # ys @ (b,b') # zs @ (c,c') # us @ (d,d') # vs) =
   del_list x (xs @ (a,a') # ys @ (b,b') # zs @ (c,c') # us) @ (d,d') # vs" 
by (auto simp: del_list_sorted sorted_lems)

lemmas del_list_simps = sorted_lems
  del_list_sorted1
  del_list_sorted2
  del_list_sorted3
  del_list_sorted4
  del_list_sorted5

text‹Splay trees need two additional constdel_list lemmas:›

lemma del_list_notin_Cons: "sorted (x # map fst xs)  del_list x xs = xs"
by(induction xs)(fastforce simp: sorted_wrt_Cons)+

lemma del_list_sorted_app:
  "sorted(map fst xs @ [x])  del_list x (xs @ ys) = xs @ del_list x ys"
by (induction xs) (auto simp: sorted_mid_iff2)

end