Theory TypeRel
subsection ‹The relations between Java types›
theory TypeRel imports Decl begin
text ‹
simplifications:
\begin{itemize}
\item subinterface, subclass and widening relation includes identity
\end{itemize}
improvements over Java Specification 1.0:
\begin{itemize}
\item narrowing reference conversion also in cases where the return types of a
pair of methods common to both types are in widening (rather identity)
relation
\item one could add similar constraints also for other cases
\end{itemize}
design issues:
\begin{itemize}
\item the type relations do not require ‹is_type› for their arguments
\item the subint1 and subcls1 relations imply ‹is_iface›/‹is_class›
for their first arguments, which is required for their finiteness
\end{itemize}
›
definition
implmt1 :: "prog ⇒ (qtname × qtname) set"
where "implmt1 G = {(C,I). C≠Object ∧ (∃c∈class G C: I∈set (superIfs c))}"
abbreviation
subint1_syntax :: "prog => [qtname, qtname] => bool" ("_⊢_≺I1_" [71,71,71] 70)
where "G⊢I ≺I1 J == (I,J) ∈ subint1 G"
abbreviation
subint_syntax :: "prog => [qtname, qtname] => bool" ("_⊢_≼I _" [71,71,71] 70)
where "G⊢I ≼I J == (I,J) ∈(subint1 G)⇧*"
abbreviation
implmt1_syntax :: "prog => [qtname, qtname] => bool" ("_⊢_↝1_" [71,71,71] 70)
where "G⊢C ↝1 I == (C,I) ∈ implmt1 G"
notation (ASCII)
subint1_syntax ("_|-_<:I1_" [71,71,71] 70) and
subint_syntax ("_|-_<=:I _"[71,71,71] 70) and
implmt1_syntax ("_|-_~>1_" [71,71,71] 70)
subsubsection "subclass and subinterface relations"
lemmas subcls_direct = subcls1I [THEN r_into_rtrancl]
lemma subcls_direct1:
"⟦class G C = Some c; C ≠ Object;D=super c⟧ ⟹ G⊢C≼⇩C D"
apply (auto dest: subcls_direct)
done
lemma subcls1I1:
"⟦class G C = Some c; C ≠ Object;D=super c⟧ ⟹ G⊢C≺⇩C1 D"
apply (auto dest: subcls1I)
done
lemma subcls_direct2:
"⟦class G C = Some c; C ≠ Object;D=super c⟧ ⟹ G⊢C≺⇩C D"
apply (auto dest: subcls1I1)
done
lemma subclseq_trans: "⟦G⊢A ≼⇩C B; G⊢B ≼⇩C C⟧ ⟹ G⊢A ≼⇩C C"
by (blast intro: rtrancl_trans)
lemma subcls_trans: "⟦G⊢A ≺⇩C B; G⊢B ≺⇩C C⟧ ⟹ G⊢A ≺⇩C C"
by (blast intro: trancl_trans)
lemma SXcpt_subcls_Throwable_lemma:
"⟦class G (SXcpt xn) = Some xc;
super xc = (if xn = Throwable then Object else SXcpt Throwable)⟧
⟹ G⊢SXcpt xn≼⇩C SXcpt Throwable"
apply (case_tac "xn = Throwable")
apply simp_all
apply (drule subcls_direct)
apply (auto dest: sym)
done
lemma subcls_ObjectI: "⟦is_class G C; ws_prog G⟧ ⟹ G⊢C≼⇩C Object"
apply (erule ws_subcls1_induct)
apply clarsimp
apply (case_tac "C = Object")
apply (fast intro: r_into_rtrancl [THEN rtrancl_trans])+
done
lemma subclseq_ObjectD [dest!]: "G⊢Object≼⇩C C ⟹ C = Object"
apply (erule rtrancl_induct)
apply (auto dest: subcls1D)
done
lemma subcls_ObjectD [dest!]: "G⊢Object≺⇩C C ⟹ False"
apply (erule trancl_induct)
apply (auto dest: subcls1D)
done
lemma subcls_ObjectI1 [intro!]:
"⟦C ≠ Object;is_class G C;ws_prog G⟧ ⟹ G⊢C ≺⇩C Object"
apply (drule (1) subcls_ObjectI)
apply (auto intro: rtrancl_into_trancl3)
done
lemma subcls_is_class: "(C,D) ∈ (subcls1 G)⇧+ ⟹ is_class G C"
apply (erule trancl_trans_induct)
apply (auto dest!: subcls1D)
done
lemma subcls_is_class2 [rule_format (no_asm)]:
"G⊢C≼⇩C D ⟹ is_class G D ⟶ is_class G C"
apply (erule rtrancl_induct)
apply (drule_tac [2] subcls1D)
apply auto
done
lemma single_inheritance:
"⟦G⊢A ≺⇩C1 B; G⊢A ≺⇩C1 C⟧ ⟹ B = C"
by (auto simp add: subcls1_def)
lemma subcls_compareable:
"⟦G⊢A ≼⇩C X; G⊢A ≼⇩C Y
⟧ ⟹ G⊢X ≼⇩C Y ∨ G⊢Y ≼⇩C X"
by (rule triangle_lemma) (auto intro: single_inheritance)
lemma subcls1_irrefl: "⟦G⊢C ≺⇩C1 D; ws_prog G ⟧
⟹ C ≠ D"
proof
assume ws: "ws_prog G" and
subcls1: "G⊢C ≺⇩C1 D" and
eq_C_D: "C=D"
from subcls1 obtain c
where
neq_C_Object: "C≠Object" and
clsC: "class G C = Some c" and
super_c: "super c = D"
by (auto simp add: subcls1_def)
with super_c subcls1 eq_C_D
have subcls_super_c_C: "G⊢super c ≺⇩C C"
by auto
from ws clsC neq_C_Object
have "¬ G⊢super c ≺⇩C C"
by (auto dest: ws_prog_cdeclD)
from this subcls_super_c_C
show "False"
by (rule notE)
qed
lemma no_subcls_Object: "G⊢C ≺⇩C D ⟹ C ≠ Object"
by (erule converse_trancl_induct) (auto dest: subcls1D)
lemma subcls_acyclic: "⟦G⊢C ≺⇩C D; ws_prog G⟧ ⟹ ¬ G⊢D ≺⇩C C"
proof -
assume ws: "ws_prog G"
assume subcls_C_D: "G⊢C ≺⇩C D"
then show ?thesis
proof (induct rule: converse_trancl_induct)
fix C
assume subcls1_C_D: "G⊢C ≺⇩C1 D"
then obtain c where
"C≠Object" and
"class G C = Some c" and
"super c = D"
by (auto simp add: subcls1_def)
with ws
show "¬ G⊢D ≺⇩C C"
by (auto dest: ws_prog_cdeclD)
next
fix C Z
assume subcls1_C_Z: "G⊢C ≺⇩C1 Z" and
subcls_Z_D: "G⊢Z ≺⇩C D" and
nsubcls_D_Z: "¬ G⊢D ≺⇩C Z"
show "¬ G⊢D ≺⇩C C"
proof
assume subcls_D_C: "G⊢D ≺⇩C C"
show "False"
proof -
from subcls_D_C subcls1_C_Z
have "G⊢D ≺⇩C Z"
by (auto dest: r_into_trancl trancl_trans)
with nsubcls_D_Z
show ?thesis
by (rule notE)
qed
qed
qed
qed
lemma subclseq_cases:
assumes "G⊢C ≼⇩C D"
obtains (Eq) "C = D" | (Subcls) "G⊢C ≺⇩C D"
using assms by (blast intro: rtrancl_cases)
lemma subclseq_acyclic:
"⟦G⊢C ≼⇩C D; G⊢D ≼⇩C C; ws_prog G⟧ ⟹ C=D"
by (auto elim: subclseq_cases dest: subcls_acyclic)
lemma subcls_irrefl: "⟦G⊢C ≺⇩C D; ws_prog G⟧
⟹ C ≠ D"
proof -
assume ws: "ws_prog G"
assume subcls: "G⊢C ≺⇩C D"
then show ?thesis
proof (induct rule: converse_trancl_induct)
fix C
assume "G⊢C ≺⇩C1 D"
with ws
show "C≠D"
by (blast dest: subcls1_irrefl)
next
fix C Z
assume subcls1_C_Z: "G⊢C ≺⇩C1 Z" and
subcls_Z_D: "G⊢Z ≺⇩C D" and
neq_Z_D: "Z ≠ D"
show "C≠D"
proof
assume eq_C_D: "C=D"
show "False"
proof -
from subcls1_C_Z eq_C_D
have "G⊢D ≺⇩C Z"
by (auto)
also
from subcls_Z_D ws
have "¬ G⊢D ≺⇩C Z"
by (rule subcls_acyclic)
ultimately
show ?thesis
by - (rule notE)
qed
qed
qed
qed
lemma invert_subclseq:
"⟦G⊢C ≼⇩C D; ws_prog G⟧
⟹ ¬ G⊢D ≺⇩C C"
proof -
assume ws: "ws_prog G" and
subclseq_C_D: "G⊢C ≼⇩C D"
show ?thesis
proof (cases "D=C")
case True
with ws
show ?thesis
by (auto dest: subcls_irrefl)
next
case False
with subclseq_C_D
have "G⊢C ≺⇩C D"
by (blast intro: rtrancl_into_trancl3)
with ws
show ?thesis
by (blast dest: subcls_acyclic)
qed
qed
lemma invert_subcls:
"⟦G⊢C ≺⇩C D; ws_prog G⟧
⟹ ¬ G⊢D ≼⇩C C"
proof -
assume ws: "ws_prog G" and
subcls_C_D: "G⊢C ≺⇩C D"
then
have nsubcls_D_C: "¬ G⊢D ≺⇩C C"
by (blast dest: subcls_acyclic)
show ?thesis
proof
assume "G⊢D ≼⇩C C"
then show "False"
proof (cases rule: subclseq_cases)
case Eq
with ws subcls_C_D
show ?thesis
by (auto dest: subcls_irrefl)
next
case Subcls
with nsubcls_D_C
show ?thesis
by blast
qed
qed
qed
lemma subcls_superD:
"⟦G⊢C ≺⇩C D; class G C = Some c⟧ ⟹ G⊢(super c) ≼⇩C D"
proof -
assume clsC: "class G C = Some c"
assume subcls_C_C: "G⊢C ≺⇩C D"
then obtain S where
"G⊢C ≺⇩C1 S" and
subclseq_S_D: "G⊢S ≼⇩C D"
by (blast dest: tranclD)
with clsC
have "S=super c"
by (auto dest: subcls1D)
with subclseq_S_D show ?thesis by simp
qed
lemma subclseq_superD:
"⟦G⊢C ≼⇩C D; C≠D;class G C = Some c⟧ ⟹ G⊢(super c) ≼⇩C D"
proof -
assume neq_C_D: "C≠D"
assume clsC: "class G C = Some c"
assume subclseq_C_D: "G⊢C ≼⇩C D"
then show ?thesis
proof (cases rule: subclseq_cases)
case Eq with neq_C_D show ?thesis by contradiction
next
case Subcls
with clsC show ?thesis by (blast dest: subcls_superD)
qed
qed
subsubsection "implementation relation"
lemma implmt1D: "G⊢C↝1I ⟹ C≠Object ∧ (∃c∈class G C: I∈set (superIfs c))"
apply (unfold implmt1_def)
apply auto
done
inductive
implmt :: "prog ⇒ qtname ⇒ qtname ⇒ bool" ("_⊢_↝_" [71,71,71] 70)
for G :: prog
where
direct: "G⊢C↝1J ⟹ G⊢C↝J"
| subint: "G⊢C↝1I ⟹ G⊢I≼I J ⟹ G⊢C↝J"
| subcls1: "G⊢C≺⇩C1D ⟹ G⊢D↝J ⟹ G⊢C↝J"
lemma implmtD: "G⊢C↝J ⟹ (∃I. G⊢C↝1I ∧ G⊢I≼I J) ∨ (∃D. G⊢C≺⇩C1D ∧ G⊢D↝J)"
apply (erule implmt.induct)
apply fast+
done
lemma implmt_ObjectE [elim!]: "G⊢Object↝I ⟹ R"
by (auto dest!: implmtD implmt1D subcls1D)
lemma subcls_implmt [rule_format (no_asm)]: "G⊢A≼⇩C B ⟹ G⊢B↝K ⟶ G⊢A↝K"
apply (erule rtrancl_induct)
apply (auto intro: implmt.subcls1)
done
lemma implmt_subint2: "⟦ G⊢A↝J; G⊢J≼I K⟧ ⟹ G⊢A↝K"
apply (erule rev_mp, erule implmt.induct)
apply (auto dest: implmt.subint rtrancl_trans implmt.subcls1)
done
lemma implmt_is_class: "G⊢C↝I ⟹ is_class G C"
apply (erule implmt.induct)
apply (auto dest: implmt1D subcls1D)
done
subsubsection "widening relation"
inductive
widen :: "prog ⇒ ty ⇒ ty ⇒ bool" ("_⊢_≼_" [71,71,71] 70)
for G :: prog
where
refl: "G⊢T≼T"
| subint: "G⊢I≼I J ⟹ G⊢Iface I≼ Iface J"
| int_obj: "G⊢Iface I≼ Class Object"
| subcls: "G⊢C≼⇩C D ⟹ G⊢Class C≼ Class D"
| implmt: "G⊢C↝I ⟹ G⊢Class C≼ Iface I"
| null: "G⊢NT≼ RefT R"
| arr_obj: "G⊢T.[]≼ Class Object"
| array: "G⊢RefT S≼RefT T ⟹ G⊢RefT S.[]≼ RefT T.[]"
declare widen.refl [intro!]
declare widen.intros [simp]
lemma widen_PrimT: "G⊢PrimT x≼T ⟹ (∃y. T = PrimT y)"
apply (ind_cases "G⊢PrimT x≼T")
by auto
lemma widen_PrimT2: "G⊢S≼PrimT x ⟹ ∃y. S = PrimT y"
apply (ind_cases "G⊢S≼PrimT x")
by auto
text ‹
These widening lemmata hold in Bali but are to strong for ordinary
Java. They would not work for real Java Integral Types, like short,
long, int. These lemmata are just for documentation and are not used.
›
lemma widen_PrimT_strong: "G⊢PrimT x≼T ⟹ T = PrimT x"
by (ind_cases "G⊢PrimT x≼T") simp_all
lemma widen_PrimT2_strong: "G⊢S≼PrimT x ⟹ S = PrimT x"
by (ind_cases "G⊢S≼PrimT x") simp_all
text ‹Specialized versions for booleans also would work for real Java›
lemma widen_Boolean: "G⊢PrimT Boolean≼T ⟹ T = PrimT Boolean"
by (ind_cases "G⊢PrimT Boolean≼T") simp_all
lemma widen_Boolean2: "G⊢S≼PrimT Boolean ⟹ S = PrimT Boolean"
by (ind_cases "G⊢S≼PrimT Boolean") simp_all
lemma widen_RefT: "G⊢RefT R≼T ⟹ ∃t. T=RefT t"
apply (ind_cases "G⊢RefT R≼T")
by auto
lemma widen_RefT2: "G⊢S≼RefT R ⟹ ∃t. S=RefT t"
apply (ind_cases "G⊢S≼RefT R")
by auto
lemma widen_Iface: "G⊢Iface I≼T ⟹ T=Class Object ∨ (∃J. T=Iface J)"
apply (ind_cases "G⊢Iface I≼T")
by auto
lemma widen_Iface2: "G⊢S≼ Iface J ⟹ S = NT ∨ (∃I. S = Iface I) ∨ (∃D. S = Class D)"
apply (ind_cases "G⊢S≼ Iface J")
by auto
lemma widen_Iface_Iface: "G⊢Iface I≼ Iface J ⟹ G⊢I≼I J"
apply (ind_cases "G⊢Iface I≼ Iface J")
by auto
lemma widen_Iface_Iface_eq [simp]: "G⊢Iface I≼ Iface J = G⊢I≼I J"
apply (rule iffI)
apply (erule widen_Iface_Iface)
apply (erule widen.subint)
done
lemma widen_Class: "G⊢Class C≼T ⟹ (∃D. T=Class D) ∨ (∃I. T=Iface I)"
apply (ind_cases "G⊢Class C≼T")
by auto
lemma widen_Class2: "G⊢S≼ Class C ⟹ C = Object ∨ S = NT ∨ (∃D. S = Class D)"
apply (ind_cases "G⊢S≼ Class C")
by auto
lemma widen_Class_Class: "G⊢Class C≼ Class cm ⟹ G⊢C≼⇩C cm"
apply (ind_cases "G⊢Class C≼ Class cm")
by auto
lemma widen_Class_Class_eq [simp]: "G⊢Class C≼ Class cm = G⊢C≼⇩C cm"
apply (rule iffI)
apply (erule widen_Class_Class)
apply (erule widen.subcls)
done
lemma widen_Class_Iface: "G⊢Class C≼ Iface I ⟹ G⊢C↝I"
apply (ind_cases "G⊢Class C≼ Iface I")
by auto
lemma widen_Class_Iface_eq [simp]: "G⊢Class C≼ Iface I = G⊢C↝I"
apply (rule iffI)
apply (erule widen_Class_Iface)
apply (erule widen.implmt)
done
lemma widen_Array: "G⊢S.[]≼T ⟹ T=Class Object ∨ (∃T'. T=T'.[] ∧ G⊢S≼T')"
apply (ind_cases "G⊢S.[]≼T")
by auto
lemma widen_Array2: "G⊢S≼T.[] ⟹ S = NT ∨ (∃S'. S=S'.[] ∧ G⊢S'≼T)"
apply (ind_cases "G⊢S≼T.[]")
by auto
lemma widen_ArrayPrimT: "G⊢PrimT t.[]≼T ⟹ T=Class Object ∨ T=PrimT t.[]"
apply (ind_cases "G⊢PrimT t.[]≼T")
by auto
lemma widen_ArrayRefT:
"G⊢RefT t.[]≼T ⟹ T=Class Object ∨ (∃s. T=RefT s.[] ∧ G⊢RefT t≼RefT s)"
apply (ind_cases "G⊢RefT t.[]≼T")
by auto
lemma widen_ArrayRefT_ArrayRefT_eq [simp]:
"G⊢RefT T.[]≼RefT T'.[] = G⊢RefT T≼RefT T'"
apply (rule iffI)
apply (drule widen_ArrayRefT)
apply simp
apply (erule widen.array)
done
lemma widen_Array_Array: "G⊢T.[]≼T'.[] ⟹ G⊢T≼T'"
apply (drule widen_Array)
apply auto
done
lemma widen_Array_Class: "G⊢S.[] ≼ Class C ⟹ C=Object"
by (auto dest: widen_Array)
lemma widen_NT2: "G⊢S≼NT ⟹ S = NT"
apply (ind_cases "G⊢S≼NT")
by auto
lemma widen_Object:
assumes "isrtype G T" and "ws_prog G"
shows "G⊢RefT T ≼ Class Object"
proof (cases T)
case (ClassT C) with assms have "G⊢C≼⇩C Object" by (auto intro: subcls_ObjectI)
with ClassT show ?thesis by auto
qed simp_all
lemma widen_trans_lemma [rule_format (no_asm)]:
"⟦G⊢S≼U; ∀C. is_class G C ⟶ G⊢C≼⇩C Object⟧ ⟹ ∀T. G⊢U≼T ⟶ G⊢S≼T"
apply (erule widen.induct)
apply safe
prefer 5 apply (drule widen_RefT) apply clarsimp
apply (frule_tac [1] widen_Iface)
apply (frule_tac [2] widen_Class)
apply (frule_tac [3] widen_Class)
apply (frule_tac [4] widen_Iface)
apply (frule_tac [5] widen_Class)
apply (frule_tac [6] widen_Array)
apply safe
apply (rule widen.int_obj)
prefer 6 apply (drule implmt_is_class) apply simp
apply (erule_tac [!] thin_rl)
prefer 6 apply simp
apply (rule_tac [9] widen.arr_obj)
apply (rotate_tac [9] -1)
apply (frule_tac [9] widen_RefT)
apply (auto elim!: rtrancl_trans subcls_implmt implmt_subint2)
done
lemma ws_widen_trans: "⟦G⊢S≼U; G⊢U≼T; ws_prog G⟧ ⟹ G⊢S≼T"
by (auto intro: widen_trans_lemma subcls_ObjectI)
lemma widen_antisym_lemma [rule_format (no_asm)]: "⟦G⊢S≼T;
∀I J. G⊢I≼I J ∧ G⊢J≼I I ⟶ I = J;
∀C D. G⊢C≼⇩C D ∧ G⊢D≼⇩C C ⟶ C = D;
∀I . G⊢Object↝I ⟶ False⟧ ⟹ G⊢T≼S ⟶ S = T"
apply (erule widen.induct)
apply (auto dest: widen_Iface widen_NT2 widen_Class)
done
lemmas subint_antisym =
subint1_acyclic [THEN acyclic_impl_antisym_rtrancl]
lemmas subcls_antisym =
subcls1_acyclic [THEN acyclic_impl_antisym_rtrancl]
lemma widen_antisym: "⟦G⊢S≼T; G⊢T≼S; ws_prog G⟧ ⟹ S=T"
by (fast elim: widen_antisym_lemma subint_antisym [THEN antisymD]
subcls_antisym [THEN antisymD])
lemma widen_ObjectD [dest!]: "G⊢Class Object≼T ⟹ T=Class Object"
apply (frule widen_Class)
apply (fast dest: widen_Class_Class widen_Class_Iface)
done
definition
widens :: "prog ⇒ [ty list, ty list] ⇒ bool" ("_⊢_[≼]_" [71,71,71] 70)
where "G⊢Ts[≼]Ts' = list_all2 (λT T'. G⊢T≼T') Ts Ts'"
lemma widens_Nil [simp]: "G⊢[][≼][]"
apply (unfold widens_def)
apply auto
done
lemma widens_Cons [simp]: "G⊢(S#Ss)[≼](T#Ts) = (G⊢S≼T ∧ G⊢Ss[≼]Ts)"
apply (unfold widens_def)
apply auto
done
subsubsection "narrowing relation"
inductive
narrow :: "prog ⇒ ty ⇒ ty ⇒ bool" ("_⊢_≻_" [71,71,71] 70)
for G :: prog
where
subcls: "G⊢C≼⇩C D ⟹ G⊢ Class D≻Class C"
| implmt: "¬G⊢C↝I ⟹ G⊢ Class C≻Iface I"
| obj_arr: "G⊢Class Object≻T.[]"
| int_cls: "G⊢ Iface I≻Class C"
| subint: "imethds G I hidings imethds G J entails
(λ(md, mh ) (md',mh'). G⊢mrt mh≼mrt mh') ⟹
¬G⊢I≼I J ⟹ G⊢ Iface I≻Iface J"
| array: "G⊢RefT S≻RefT T ⟹ G⊢ RefT S.[]≻RefT T.[]"
lemma narrow_RefT: "G⊢RefT R≻T ⟹ ∃t. T=RefT t"
apply (ind_cases "G⊢RefT R≻T")
by auto
lemma narrow_RefT2: "G⊢S≻RefT R ⟹ ∃t. S=RefT t"
apply (ind_cases "G⊢S≻RefT R")
by auto
lemma narrow_PrimT: "G⊢PrimT pt≻T ⟹ ∃t. T=PrimT t"
by (ind_cases "G⊢PrimT pt≻T")
lemma narrow_PrimT2: "G⊢S≻PrimT pt ⟹
∃t. S=PrimT t ∧ G⊢PrimT t≼PrimT pt"
by (ind_cases "G⊢S≻PrimT pt")
text ‹
These narrowing lemmata hold in Bali but are to strong for ordinary
Java. They would not work for real Java Integral Types, like short,
long, int. These lemmata are just for documentation and are not used.
›
lemma narrow_PrimT_strong: "G⊢PrimT pt≻T ⟹ T=PrimT pt"
by (ind_cases "G⊢PrimT pt≻T")
lemma narrow_PrimT2_strong: "G⊢S≻PrimT pt ⟹ S=PrimT pt"
by (ind_cases "G⊢S≻PrimT pt")
text ‹Specialized versions for booleans also would work for real Java›
lemma narrow_Boolean: "G⊢PrimT Boolean≻T ⟹ T=PrimT Boolean"
by (ind_cases "G⊢PrimT Boolean≻T")
lemma narrow_Boolean2: "G⊢S≻PrimT Boolean ⟹ S=PrimT Boolean"
by (ind_cases "G⊢S≻PrimT Boolean")
subsubsection "casting relation"
inductive
cast :: "prog ⇒ ty ⇒ ty ⇒ bool" ("_⊢_≼? _" [71,71,71] 70)
for G :: prog
where
widen: "G⊢S≼T ⟹ G⊢S≼? T"
| narrow: "G⊢S≻T ⟹ G⊢S≼? T"
lemma cast_RefT: "G⊢RefT R≼? T ⟹ ∃t. T=RefT t"
apply (ind_cases "G⊢RefT R≼? T")
by (auto dest: widen_RefT narrow_RefT)
lemma cast_RefT2: "G⊢S≼? RefT R ⟹ ∃t. S=RefT t"
apply (ind_cases "G⊢S≼? RefT R")
by (auto dest: widen_RefT2 narrow_RefT2)
lemma cast_PrimT: "G⊢PrimT pt≼? T ⟹ ∃t. T=PrimT t"
apply (ind_cases "G⊢PrimT pt≼? T")
by (auto dest: widen_PrimT narrow_PrimT)
lemma cast_PrimT2: "G⊢S≼? PrimT pt ⟹ ∃t. S=PrimT t ∧ G⊢PrimT t≼PrimT pt"
apply (ind_cases "G⊢S≼? PrimT pt")
by (auto dest: widen_PrimT2 narrow_PrimT2)
lemma cast_Boolean:
assumes bool_cast: "G⊢PrimT Boolean≼? T"
shows "T=PrimT Boolean"
using bool_cast
proof (cases)
case widen
hence "G⊢PrimT Boolean≼ T"
by simp
thus ?thesis by (rule widen_Boolean)
next
case narrow
hence "G⊢PrimT Boolean≻T"
by simp
thus ?thesis by (rule narrow_Boolean)
qed
lemma cast_Boolean2:
assumes bool_cast: "G⊢S≼? PrimT Boolean"
shows "S = PrimT Boolean"
using bool_cast
proof (cases)
case widen
hence "G⊢S≼ PrimT Boolean"
by simp
thus ?thesis by (rule widen_Boolean2)
next
case narrow
hence "G⊢S≻PrimT Boolean"
by simp
thus ?thesis by (rule narrow_Boolean2)
qed
end