Theory HOL-Library.Set_Idioms
section ‹Set Idioms›
theory Set_Idioms
imports Countable_Set
begin
subsection‹Idioms for being a suitable union/intersection of something›
definition union_of :: "('a set set ⇒ bool) ⇒ ('a set ⇒ bool) ⇒ 'a set ⇒ bool"
(infixr "union'_of" 60)
where "P union_of Q ≡ λS. ∃𝒰. P 𝒰 ∧ 𝒰 ⊆ Collect Q ∧ ⋃𝒰 = S"
definition intersection_of :: "('a set set ⇒ bool) ⇒ ('a set ⇒ bool) ⇒ 'a set ⇒ bool"
(infixr "intersection'_of" 60)
where "P intersection_of Q ≡ λS. ∃𝒰. P 𝒰 ∧ 𝒰 ⊆ Collect Q ∧ ⋂𝒰 = S"
definition arbitrary:: "'a set set ⇒ bool" where "arbitrary 𝒰 ≡ True"
lemma union_of_inc: "⟦P {S}; Q S⟧ ⟹ (P union_of Q) S"
by (auto simp: union_of_def)
lemma intersection_of_inc:
"⟦P {S}; Q S⟧ ⟹ (P intersection_of Q) S"
by (auto simp: intersection_of_def)
lemma union_of_mono:
"⟦(P union_of Q) S; ⋀x. Q x ⟹ Q' x⟧ ⟹ (P union_of Q') S"
by (auto simp: union_of_def)
lemma intersection_of_mono:
"⟦(P intersection_of Q) S; ⋀x. Q x ⟹ Q' x⟧ ⟹ (P intersection_of Q') S"
by (auto simp: intersection_of_def)
lemma all_union_of:
"(∀S. (P union_of Q) S ⟶ R S) ⟷ (∀T. P T ∧ T ⊆ Collect Q ⟶ R(⋃T))"
by (auto simp: union_of_def)
lemma all_intersection_of:
"(∀S. (P intersection_of Q) S ⟶ R S) ⟷ (∀T. P T ∧ T ⊆ Collect Q ⟶ R(⋂T))"
by (auto simp: intersection_of_def)
lemma intersection_ofE:
"⟦(P intersection_of Q) S; ⋀T. ⟦P T; T ⊆ Collect Q⟧ ⟹ R(⋂T)⟧ ⟹ R S"
by (auto simp: intersection_of_def)
lemma union_of_empty:
"P {} ⟹ (P union_of Q) {}"
by (auto simp: union_of_def)
lemma intersection_of_empty:
"P {} ⟹ (P intersection_of Q) UNIV"
by (auto simp: intersection_of_def)
text‹ The arbitrary and finite cases›
lemma arbitrary_union_of_alt:
"(arbitrary union_of Q) S ⟷ (∀x ∈ S. ∃U. Q U ∧ x ∈ U ∧ U ⊆ S)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
by (force simp: union_of_def arbitrary_def)
next
assume ?rhs
then have "{U. Q U ∧ U ⊆ S} ⊆ Collect Q" "⋃{U. Q U ∧ U ⊆ S} = S"
by auto
then show ?lhs
unfolding union_of_def arbitrary_def by blast
qed
lemma arbitrary_union_of_empty [simp]: "(arbitrary union_of P) {}"
by (force simp: union_of_def arbitrary_def)
lemma arbitrary_intersection_of_empty [simp]:
"(arbitrary intersection_of P) UNIV"
by (force simp: intersection_of_def arbitrary_def)
lemma arbitrary_union_of_inc:
"P S ⟹ (arbitrary union_of P) S"
by (force simp: union_of_inc arbitrary_def)
lemma arbitrary_intersection_of_inc:
"P S ⟹ (arbitrary intersection_of P) S"
by (force simp: intersection_of_inc arbitrary_def)
lemma arbitrary_union_of_complement:
"(arbitrary union_of P) S ⟷ (arbitrary intersection_of (λS. P(- S))) (- S)" (is "?lhs = ?rhs")
proof
assume ?lhs
then obtain 𝒰 where "𝒰 ⊆ Collect P" "S = ⋃𝒰"
by (auto simp: union_of_def arbitrary_def)
then show ?rhs
unfolding intersection_of_def arbitrary_def
by (rule_tac x="uminus ` 𝒰" in exI) auto
next
assume ?rhs
then obtain 𝒰 where "𝒰 ⊆ {S. P (- S)}" "⋂𝒰 = - S"
by (auto simp: union_of_def intersection_of_def arbitrary_def)
then show ?lhs
unfolding union_of_def arbitrary_def
by (rule_tac x="uminus ` 𝒰" in exI) auto
qed
lemma arbitrary_intersection_of_complement:
"(arbitrary intersection_of P) S ⟷ (arbitrary union_of (λS. P(- S))) (- S)"
by (simp add: arbitrary_union_of_complement)
lemma arbitrary_union_of_idempot [simp]:
"arbitrary union_of arbitrary union_of P = arbitrary union_of P"
proof -
have 1: "∃𝒰'⊆Collect P. ⋃𝒰' = ⋃𝒰" if "𝒰 ⊆ {S. ∃𝒱⊆Collect P. ⋃𝒱 = S}" for 𝒰
proof -
let ?𝒲 = "{V. ∃𝒱. 𝒱⊆Collect P ∧ V ∈ 𝒱 ∧ (∃S ∈ 𝒰. ⋃𝒱 = S)}"
have *: "⋀x U. ⟦x ∈ U; U ∈ 𝒰⟧ ⟹ x ∈ ⋃?𝒲"
using that
apply simp
apply (drule subsetD, assumption, auto)
done
show ?thesis
apply (rule_tac x="{V. ∃𝒱. 𝒱⊆Collect P ∧ V ∈ 𝒱 ∧ (∃S ∈ 𝒰. ⋃𝒱 = S)}" in exI)
using that by (blast intro: *)
qed
have 2: "∃𝒰'⊆{S. ∃𝒰⊆Collect P. ⋃𝒰 = S}. ⋃𝒰' = ⋃𝒰" if "𝒰 ⊆ Collect P" for 𝒰
by (metis (mono_tags, lifting) union_of_def arbitrary_union_of_inc that)
show ?thesis
unfolding union_of_def arbitrary_def by (force simp: 1 2)
qed
lemma arbitrary_intersection_of_idempot:
"arbitrary intersection_of arbitrary intersection_of P = arbitrary intersection_of P" (is "?lhs = ?rhs")
proof -
have "- ?lhs = - ?rhs"
unfolding arbitrary_intersection_of_complement by simp
then show ?thesis
by simp
qed
lemma arbitrary_union_of_Union:
"(⋀S. S ∈ 𝒰 ⟹ (arbitrary union_of P) S) ⟹ (arbitrary union_of P) (⋃𝒰)"
by (metis union_of_def arbitrary_def arbitrary_union_of_idempot mem_Collect_eq subsetI)
lemma arbitrary_union_of_Un:
"⟦(arbitrary union_of P) S; (arbitrary union_of P) T⟧
⟹ (arbitrary union_of P) (S ∪ T)"
using arbitrary_union_of_Union [of "{S,T}"] by auto
lemma arbitrary_intersection_of_Inter:
"(⋀S. S ∈ 𝒰 ⟹ (arbitrary intersection_of P) S) ⟹ (arbitrary intersection_of P) (⋂𝒰)"
by (metis intersection_of_def arbitrary_def arbitrary_intersection_of_idempot mem_Collect_eq subsetI)
lemma arbitrary_intersection_of_Int:
"⟦(arbitrary intersection_of P) S; (arbitrary intersection_of P) T⟧
⟹ (arbitrary intersection_of P) (S ∩ T)"
using arbitrary_intersection_of_Inter [of "{S,T}"] by auto
lemma arbitrary_union_of_Int_eq:
"(∀S T. (arbitrary union_of P) S ∧ (arbitrary union_of P) T
⟶ (arbitrary union_of P) (S ∩ T))
⟷ (∀S T. P S ∧ P T ⟶ (arbitrary union_of P) (S ∩ T))" (is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
by (simp add: arbitrary_union_of_inc)
next
assume R: ?rhs
show ?lhs
proof clarify
fix S :: "'a set" and T :: "'a set"
assume "(arbitrary union_of P) S" and "(arbitrary union_of P) T"
then obtain 𝒰 𝒱 where *: "𝒰 ⊆ Collect P" "⋃𝒰 = S" "𝒱 ⊆ Collect P" "⋃𝒱 = T"
by (auto simp: union_of_def)
then have "(arbitrary union_of P) (⋃C∈𝒰. ⋃D∈𝒱. C ∩ D)"
using R by (blast intro: arbitrary_union_of_Union)
then show "(arbitrary union_of P) (S ∩ T)"
by (simp add: Int_UN_distrib2 *)
qed
qed
lemma arbitrary_intersection_of_Un_eq:
"(∀S T. (arbitrary intersection_of P) S ∧ (arbitrary intersection_of P) T
⟶ (arbitrary intersection_of P) (S ∪ T)) ⟷
(∀S T. P S ∧ P T ⟶ (arbitrary intersection_of P) (S ∪ T))"
apply (simp add: arbitrary_intersection_of_complement)
using arbitrary_union_of_Int_eq [of "λS. P (- S)"]
by (metis (no_types, lifting) arbitrary_def double_compl union_of_inc)
lemma finite_union_of_empty [simp]: "(finite union_of P) {}"
by (simp add: union_of_empty)
lemma finite_intersection_of_empty [simp]: "(finite intersection_of P) UNIV"
by (simp add: intersection_of_empty)
lemma finite_union_of_inc:
"P S ⟹ (finite union_of P) S"
by (simp add: union_of_inc)
lemma finite_intersection_of_inc:
"P S ⟹ (finite intersection_of P) S"
by (simp add: intersection_of_inc)
lemma finite_union_of_complement:
"(finite union_of P) S ⟷ (finite intersection_of (λS. P(- S))) (- S)"
unfolding union_of_def intersection_of_def
apply safe
apply (rule_tac x="uminus ` 𝒰" in exI, fastforce)+
done
lemma finite_intersection_of_complement:
"(finite intersection_of P) S ⟷ (finite union_of (λS. P(- S))) (- S)"
by (simp add: finite_union_of_complement)
lemma finite_union_of_idempot [simp]:
"finite union_of finite union_of P = finite union_of P"
proof -
have "(finite union_of P) S" if S: "(finite union_of finite union_of P) S" for S
proof -
obtain 𝒰 where "finite 𝒰" "S = ⋃𝒰" and 𝒰: "∀U∈𝒰. ∃𝒰. finite 𝒰 ∧ (𝒰 ⊆ Collect P) ∧ ⋃𝒰 = U"
using S unfolding union_of_def by (auto simp: subset_eq)
then obtain f where "∀U∈𝒰. finite (f U) ∧ (f U ⊆ Collect P) ∧ ⋃(f U) = U"
by metis
then show ?thesis
unfolding union_of_def ‹S = ⋃𝒰›
by (rule_tac x = "snd ` Sigma 𝒰 f" in exI) (fastforce simp: ‹finite 𝒰›)
qed
moreover
have "(finite union_of finite union_of P) S" if "(finite union_of P) S" for S
by (simp add: finite_union_of_inc that)
ultimately show ?thesis
by force
qed
lemma finite_intersection_of_idempot [simp]:
"finite intersection_of finite intersection_of P = finite intersection_of P"
by (force simp: finite_intersection_of_complement)
lemma finite_union_of_Union:
"⟦finite 𝒰; ⋀S. S ∈ 𝒰 ⟹ (finite union_of P) S⟧ ⟹ (finite union_of P) (⋃𝒰)"
using finite_union_of_idempot [of P]
by (metis mem_Collect_eq subsetI union_of_def)
lemma finite_union_of_Un:
"⟦(finite union_of P) S; (finite union_of P) T⟧ ⟹ (finite union_of P) (S ∪ T)"
by (auto simp: union_of_def)
lemma finite_intersection_of_Inter:
"⟦finite 𝒰; ⋀S. S ∈ 𝒰 ⟹ (finite intersection_of P) S⟧ ⟹ (finite intersection_of P) (⋂𝒰)"
using finite_intersection_of_idempot [of P]
by (metis intersection_of_def mem_Collect_eq subsetI)
lemma finite_intersection_of_Int:
"⟦(finite intersection_of P) S; (finite intersection_of P) T⟧
⟹ (finite intersection_of P) (S ∩ T)"
by (auto simp: intersection_of_def)
lemma finite_union_of_Int_eq:
"(∀S T. (finite union_of P) S ∧ (finite union_of P) T ⟶ (finite union_of P) (S ∩ T))
⟷ (∀S T. P S ∧ P T ⟶ (finite union_of P) (S ∩ T))"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
by (simp add: finite_union_of_inc)
next
assume R: ?rhs
show ?lhs
proof clarify
fix S :: "'a set" and T :: "'a set"
assume "(finite union_of P) S" and "(finite union_of P) T"
then obtain 𝒰 𝒱 where *: "𝒰 ⊆ Collect P" "⋃𝒰 = S" "finite 𝒰" "𝒱 ⊆ Collect P" "⋃𝒱 = T" "finite 𝒱"
by (auto simp: union_of_def)
then have "(finite union_of P) (⋃C∈𝒰. ⋃D∈𝒱. C ∩ D)"
using R
by (blast intro: finite_union_of_Union)
then show "(finite union_of P) (S ∩ T)"
by (simp add: Int_UN_distrib2 *)
qed
qed
lemma finite_intersection_of_Un_eq:
"(∀S T. (finite intersection_of P) S ∧
(finite intersection_of P) T
⟶ (finite intersection_of P) (S ∪ T)) ⟷
(∀S T. P S ∧ P T ⟶ (finite intersection_of P) (S ∪ T))"
apply (simp add: finite_intersection_of_complement)
using finite_union_of_Int_eq [of "λS. P (- S)"]
by (metis (no_types, lifting) double_compl)
abbreviation finite' :: "'a set ⇒ bool"
where "finite' A ≡ finite A ∧ A ≠ {}"
lemma finite'_intersection_of_Int:
"⟦(finite' intersection_of P) S; (finite' intersection_of P) T⟧
⟹ (finite' intersection_of P) (S ∩ T)"
by (auto simp: intersection_of_def)
lemma finite'_intersection_of_inc:
"P S ⟹ (finite' intersection_of P) S"
by (simp add: intersection_of_inc)
subsection ‹The ``Relative to'' operator›
text‹A somewhat cheap but handy way of getting localized forms of various topological concepts
(open, closed, borel, fsigma, gdelta etc.)›
definition relative_to :: "['a set ⇒ bool, 'a set, 'a set] ⇒ bool" (infixl "relative'_to" 55)
where "P relative_to S ≡ λT. ∃U. P U ∧ S ∩ U = T"
lemma relative_to_UNIV [simp]: "(P relative_to UNIV) S ⟷ P S"
by (simp add: relative_to_def)
lemma relative_to_imp_subset:
"(P relative_to S) T ⟹ T ⊆ S"
by (auto simp: relative_to_def)
lemma all_relative_to: "(∀S. (P relative_to U) S ⟶ Q S) ⟷ (∀S. P S ⟶ Q(U ∩ S))"
by (auto simp: relative_to_def)
lemma relative_toE: "⟦(P relative_to U) S; ⋀S. P S ⟹ Q(U ∩ S)⟧ ⟹ Q S"
by (auto simp: relative_to_def)
lemma relative_to_inc:
"P S ⟹ (P relative_to U) (U ∩ S)"
by (auto simp: relative_to_def)
lemma relative_to_relative_to [simp]:
"P relative_to S relative_to T = P relative_to (S ∩ T)"
unfolding relative_to_def
by auto
lemma relative_to_compl:
"S ⊆ U ⟹ ((P relative_to U) (U - S) ⟷ ((λc. P(- c)) relative_to U) S)"
unfolding relative_to_def
by (metis Diff_Diff_Int Diff_eq double_compl inf.absorb_iff2)
lemma relative_to_subset_trans:
"⟦(P relative_to U) S; S ⊆ T; T ⊆ U⟧ ⟹ (P relative_to T) S"
unfolding relative_to_def by auto
lemma relative_to_mono:
"⟦(P relative_to U) S; ⋀S. P S ⟹ Q S⟧ ⟹ (Q relative_to U) S"
unfolding relative_to_def by auto
lemma relative_to_subset_inc: "⟦S ⊆ U; P S⟧ ⟹ (P relative_to U) S"
unfolding relative_to_def by auto
lemma relative_to_Int:
"⟦(P relative_to S) C; (P relative_to S) D; ⋀X Y. ⟦P X; P Y⟧ ⟹ P(X ∩ Y)⟧
⟹ (P relative_to S) (C ∩ D)"
unfolding relative_to_def by auto
lemma relative_to_Un:
"⟦(P relative_to S) C; (P relative_to S) D; ⋀X Y. ⟦P X; P Y⟧ ⟹ P(X ∪ Y)⟧
⟹ (P relative_to S) (C ∪ D)"
unfolding relative_to_def by auto
lemma arbitrary_union_of_relative_to:
"((arbitrary union_of P) relative_to U) = (arbitrary union_of (P relative_to U))" (is "?lhs = ?rhs")
proof -
have "?rhs S" if L: "?lhs S" for S
proof -
obtain 𝒰 where "S = U ∩ ⋃𝒰" "𝒰 ⊆ Collect P"
using L unfolding relative_to_def union_of_def by auto
then show ?thesis
unfolding relative_to_def union_of_def arbitrary_def
by (rule_tac x="(λX. U ∩ X) ` 𝒰" in exI) auto
qed
moreover have "?lhs S" if R: "?rhs S" for S
proof -
obtain 𝒰 where "S = ⋃𝒰" "∀T∈𝒰. ∃V. P V ∧ U ∩ V = T"
using R unfolding relative_to_def union_of_def by auto
then obtain f where f: "⋀T. T ∈ 𝒰 ⟹ P (f T)" "⋀T. T ∈ 𝒰 ⟹ U ∩ (f T) = T"
by metis
then have "∃𝒰'⊆Collect P. ⋃𝒰' = ⋃ (f ` 𝒰)"
by (metis image_subset_iff mem_Collect_eq)
moreover have eq: "U ∩ ⋃ (f ` 𝒰) = ⋃𝒰"
using f by auto
ultimately show ?thesis
unfolding relative_to_def union_of_def arbitrary_def ‹S = ⋃𝒰›
by metis
qed
ultimately show ?thesis
by blast
qed
lemma finite_union_of_relative_to:
"((finite union_of P) relative_to U) = (finite union_of (P relative_to U))" (is "?lhs = ?rhs")
proof -
have "?rhs S" if L: "?lhs S" for S
proof -
obtain 𝒰 where "S = U ∩ ⋃𝒰" "𝒰 ⊆ Collect P" "finite 𝒰"
using L unfolding relative_to_def union_of_def by auto
then show ?thesis
unfolding relative_to_def union_of_def
by (rule_tac x="(λX. U ∩ X) ` 𝒰" in exI) auto
qed
moreover have "?lhs S" if R: "?rhs S" for S
proof -
obtain 𝒰 where "S = ⋃𝒰" "∀T∈𝒰. ∃V. P V ∧ U ∩ V = T" "finite 𝒰"
using R unfolding relative_to_def union_of_def by auto
then obtain f where f: "⋀T. T ∈ 𝒰 ⟹ P (f T)" "⋀T. T ∈ 𝒰 ⟹ U ∩ (f T) = T"
by metis
then have "∃𝒰'⊆Collect P. ⋃𝒰' = ⋃ (f ` 𝒰)"
by (metis image_subset_iff mem_Collect_eq)
moreover have eq: "U ∩ ⋃ (f ` 𝒰) = ⋃𝒰"
using f by auto
ultimately show ?thesis
using ‹finite 𝒰› f
unfolding relative_to_def union_of_def ‹S = ⋃𝒰›
by (rule_tac x="⋃ (f ` 𝒰)" in exI) (metis finite_imageI image_subsetI mem_Collect_eq)
qed
ultimately show ?thesis
by blast
qed
lemma countable_union_of_relative_to:
"((countable union_of P) relative_to U) = (countable union_of (P relative_to U))" (is "?lhs = ?rhs")
proof -
have "?rhs S" if L: "?lhs S" for S
proof -
obtain 𝒰 where "S = U ∩ ⋃𝒰" "𝒰 ⊆ Collect P" "countable 𝒰"
using L unfolding relative_to_def union_of_def by auto
then show ?thesis
unfolding relative_to_def union_of_def
by (rule_tac x="(λX. U ∩ X) ` 𝒰" in exI) auto
qed
moreover have "?lhs S" if R: "?rhs S" for S
proof -
obtain 𝒰 where "S = ⋃𝒰" "∀T∈𝒰. ∃V. P V ∧ U ∩ V = T" "countable 𝒰"
using R unfolding relative_to_def union_of_def by auto
then obtain f where f: "⋀T. T ∈ 𝒰 ⟹ P (f T)" "⋀T. T ∈ 𝒰 ⟹ U ∩ (f T) = T"
by metis
then have "∃𝒰'⊆Collect P. ⋃𝒰' = ⋃ (f ` 𝒰)"
by (metis image_subset_iff mem_Collect_eq)
moreover have eq: "U ∩ ⋃ (f ` 𝒰) = ⋃𝒰"
using f by auto
ultimately show ?thesis
using ‹countable 𝒰› f
unfolding relative_to_def union_of_def ‹S = ⋃𝒰›
by (rule_tac x="⋃ (f ` 𝒰)" in exI) (metis countable_image image_subsetI mem_Collect_eq)
qed
ultimately show ?thesis
by blast
qed
lemma arbitrary_intersection_of_relative_to:
"((arbitrary intersection_of P) relative_to U) = ((arbitrary intersection_of (P relative_to U)) relative_to U)" (is "?lhs = ?rhs")
proof -
have "?rhs S" if L: "?lhs S" for S
proof -
obtain 𝒰 where 𝒰: "S = U ∩ ⋂𝒰" "𝒰 ⊆ Collect P"
using L unfolding relative_to_def intersection_of_def by auto
show ?thesis
unfolding relative_to_def intersection_of_def arbitrary_def
proof (intro exI conjI)
show "U ∩ (⋂X∈𝒰. U ∩ X) = S" "(∩) U ` 𝒰 ⊆ {T. ∃Ua. P Ua ∧ U ∩ Ua = T}"
using 𝒰 by blast+
qed auto
qed
moreover have "?lhs S" if R: "?rhs S" for S
proof -
obtain 𝒰 where "S = U ∩ ⋂𝒰" "∀T∈𝒰. ∃V. P V ∧ U ∩ V = T"
using R unfolding relative_to_def intersection_of_def by auto
then obtain f where f: "⋀T. T ∈ 𝒰 ⟹ P (f T)" "⋀T. T ∈ 𝒰 ⟹ U ∩ (f T) = T"
by metis
then have "f ` 𝒰 ⊆ Collect P"
by auto
moreover have eq: "U ∩ ⋂(f ` 𝒰) = U ∩ ⋂𝒰"
using f by auto
ultimately show ?thesis
unfolding relative_to_def intersection_of_def arbitrary_def ‹S = U ∩ ⋂𝒰›
by auto
qed
ultimately show ?thesis
by blast
qed
lemma finite_intersection_of_relative_to:
"((finite intersection_of P) relative_to U) = ((finite intersection_of (P relative_to U)) relative_to U)" (is "?lhs = ?rhs")
proof -
have "?rhs S" if L: "?lhs S" for S
proof -
obtain 𝒰 where 𝒰: "S = U ∩ ⋂𝒰" "𝒰 ⊆ Collect P" "finite 𝒰"
using L unfolding relative_to_def intersection_of_def by auto
show ?thesis
unfolding relative_to_def intersection_of_def
proof (intro exI conjI)
show "U ∩ (⋂X∈𝒰. U ∩ X) = S" "(∩) U ` 𝒰 ⊆ {T. ∃Ua. P Ua ∧ U ∩ Ua = T}"
using 𝒰 by blast+
show "finite ((∩) U ` 𝒰)"
by (simp add: ‹finite 𝒰›)
qed auto
qed
moreover have "?lhs S" if R: "?rhs S" for S
proof -
obtain 𝒰 where "S = U ∩ ⋂𝒰" "∀T∈𝒰. ∃V. P V ∧ U ∩ V = T" "finite 𝒰"
using R unfolding relative_to_def intersection_of_def by auto
then obtain f where f: "⋀T. T ∈ 𝒰 ⟹ P (f T)" "⋀T. T ∈ 𝒰 ⟹ U ∩ (f T) = T"
by metis
then have "f ` 𝒰 ⊆ Collect P"
by auto
moreover have eq: "U ∩ ⋂ (f ` 𝒰) = U ∩ ⋂ 𝒰"
using f by auto
ultimately show ?thesis
unfolding relative_to_def intersection_of_def ‹S = U ∩ ⋂𝒰›
using ‹finite 𝒰›
by auto
qed
ultimately show ?thesis
by blast
qed
lemma countable_intersection_of_relative_to:
"((countable intersection_of P) relative_to U) = ((countable intersection_of (P relative_to U)) relative_to U)" (is "?lhs = ?rhs")
proof -
have "?rhs S" if L: "?lhs S" for S
proof -
obtain 𝒰 where 𝒰: "S = U ∩ ⋂𝒰" "𝒰 ⊆ Collect P" "countable 𝒰"
using L unfolding relative_to_def intersection_of_def by auto
show ?thesis
unfolding relative_to_def intersection_of_def
proof (intro exI conjI)
show "U ∩ (⋂X∈𝒰. U ∩ X) = S" "(∩) U ` 𝒰 ⊆ {T. ∃Ua. P Ua ∧ U ∩ Ua = T}"
using 𝒰 by blast+
show "countable ((∩) U ` 𝒰)"
by (simp add: ‹countable 𝒰›)
qed auto
qed
moreover have "?lhs S" if R: "?rhs S" for S
proof -
obtain 𝒰 where "S = U ∩ ⋂𝒰" "∀T∈𝒰. ∃V. P V ∧ U ∩ V = T" "countable 𝒰"
using R unfolding relative_to_def intersection_of_def by auto
then obtain f where f: "⋀T. T ∈ 𝒰 ⟹ P (f T)" "⋀T. T ∈ 𝒰 ⟹ U ∩ (f T) = T"
by metis
then have "f ` 𝒰 ⊆ Collect P"
by auto
moreover have eq: "U ∩ ⋂ (f ` 𝒰) = U ∩ ⋂ 𝒰"
using f by auto
ultimately show ?thesis
unfolding relative_to_def intersection_of_def ‹S = U ∩ ⋂𝒰›
using ‹countable 𝒰› countable_image
by auto
qed
ultimately show ?thesis
by blast
qed
lemma countable_union_of_empty [simp]: "(countable union_of P) {}"
by (simp add: union_of_empty)
lemma countable_intersection_of_empty [simp]: "(countable intersection_of P) UNIV"
by (simp add: intersection_of_empty)
lemma countable_union_of_inc: "P S ⟹ (countable union_of P) S"
by (simp add: union_of_inc)
lemma countable_intersection_of_inc: "P S ⟹ (countable intersection_of P) S"
by (simp add: intersection_of_inc)
lemma countable_union_of_complement:
"(countable union_of P) S ⟷ (countable intersection_of (λS. P(-S))) (-S)"
(is "?lhs=?rhs")
proof
assume ?lhs
then obtain 𝒰 where "countable 𝒰" and 𝒰: "𝒰 ⊆ Collect P" "⋃𝒰 = S"
by (metis union_of_def)
define 𝒰' where "𝒰' ≡ (λC. -C) ` 𝒰"
have "𝒰' ⊆ {S. P (- S)}" "⋂𝒰' = -S"
using 𝒰'_def 𝒰 by auto
then show ?rhs
unfolding intersection_of_def by (metis 𝒰'_def ‹countable 𝒰› countable_image)
next
assume ?rhs
then obtain 𝒰 where "countable 𝒰" and 𝒰: "𝒰 ⊆ {S. P (- S)}" "⋂𝒰 = -S"
by (metis intersection_of_def)
define 𝒰' where "𝒰' ≡ (λC. -C) ` 𝒰"
have "𝒰' ⊆ Collect P" "⋃ 𝒰' = S"
using 𝒰'_def 𝒰 by auto
then show ?lhs
unfolding union_of_def
by (metis 𝒰'_def ‹countable 𝒰› countable_image)
qed
lemma countable_intersection_of_complement:
"(countable intersection_of P) S ⟷ (countable union_of (λS. P(- S))) (- S)"
by (simp add: countable_union_of_complement)
lemma countable_union_of_explicit:
assumes "P {}"
shows "(countable union_of P) S ⟷
(∃T. (∀n::nat. P(T n)) ∧ ⋃(range T) = S)" (is "?lhs=?rhs")
proof
assume ?lhs
then obtain 𝒰 where "countable 𝒰" and 𝒰: "𝒰 ⊆ Collect P" "⋃𝒰 = S"
by (metis union_of_def)
then show ?rhs
by (metis SUP_bot Sup_empty assms from_nat_into mem_Collect_eq range_from_nat_into subsetD)
next
assume ?rhs
then show ?lhs
by (metis countableI_type countable_image image_subset_iff mem_Collect_eq union_of_def)
qed
lemma countable_union_of_ascending:
assumes empty: "P {}" and Un: "⋀T U. ⟦P T; P U⟧ ⟹ P(T ∪ U)"
shows "(countable union_of P) S ⟷
(∃T. (∀n. P(T n)) ∧ (∀n. T n ⊆ T(Suc n)) ∧ ⋃(range T) = S)" (is "?lhs=?rhs")
proof
assume ?lhs
then obtain T where T: "⋀n::nat. P(T n)" "⋃(range T) = S"
by (meson empty countable_union_of_explicit)
have "P (⋃ (T ` {..n}))" for n
by (induction n) (auto simp: atMost_Suc Un T)
with T show ?rhs
by (rule_tac x="λn. ⋃k≤n. T k" in exI) force
next
assume ?rhs
then show ?lhs
using empty countable_union_of_explicit by auto
qed
lemma countable_union_of_idem [simp]:
"countable union_of countable union_of P = countable union_of P" (is "?lhs=?rhs")
proof
fix S
show "(countable union_of countable union_of P) S = (countable union_of P) S"
proof
assume L: "?lhs S"
then obtain 𝒰 where "countable 𝒰" and 𝒰: "𝒰 ⊆ Collect (countable union_of P)" "⋃𝒰 = S"
by (metis union_of_def)
then have "∀U ∈ 𝒰. ∃𝒱. countable 𝒱 ∧ 𝒱 ⊆ Collect P ∧ U = ⋃𝒱"
by (metis Ball_Collect union_of_def)
then obtain ℱ where ℱ: "∀U ∈ 𝒰. countable (ℱ U) ∧ ℱ U ⊆ Collect P ∧ U = ⋃(ℱ U)"
by metis
have "countable (⋃ (ℱ ` 𝒰))"
using ℱ ‹countable 𝒰› by blast
moreover have "⋃ (ℱ ` 𝒰) ⊆ Collect P"
by (simp add: Sup_le_iff ℱ)
moreover have "⋃ (⋃ (ℱ ` 𝒰)) = S"
by auto (metis Union_iff ℱ 𝒰(2))+
ultimately show "?rhs S"
by (meson union_of_def)
qed (simp add: countable_union_of_inc)
qed
lemma countable_intersection_of_idem [simp]:
"countable intersection_of countable intersection_of P =
countable intersection_of P"
by (force simp: countable_intersection_of_complement)
lemma countable_union_of_Union:
"⟦countable 𝒰; ⋀S. S ∈ 𝒰 ⟹ (countable union_of P) S⟧
⟹ (countable union_of P) (⋃ 𝒰)"
by (metis Ball_Collect countable_union_of_idem union_of_def)
lemma countable_union_of_UN:
"⟦countable I; ⋀i. i ∈ I ⟹ (countable union_of P) (U i)⟧
⟹ (countable union_of P) (⋃i∈I. U i)"
by (metis (mono_tags, lifting) countable_image countable_union_of_Union imageE)
lemma countable_union_of_Un:
"⟦(countable union_of P) S; (countable union_of P) T⟧
⟹ (countable union_of P) (S ∪ T)"
by (smt (verit) Union_Un_distrib countable_Un le_sup_iff union_of_def)
lemma countable_intersection_of_Inter:
"⟦countable 𝒰; ⋀S. S ∈ 𝒰 ⟹ (countable intersection_of P) S⟧
⟹ (countable intersection_of P) (⋂ 𝒰)"
by (metis countable_intersection_of_idem intersection_of_def mem_Collect_eq subsetI)
lemma countable_intersection_of_INT:
"⟦countable I; ⋀i. i ∈ I ⟹ (countable intersection_of P) (U i)⟧
⟹ (countable intersection_of P) (⋂i∈I. U i)"
by (metis (mono_tags, lifting) countable_image countable_intersection_of_Inter imageE)
lemma countable_intersection_of_inter:
"⟦(countable intersection_of P) S; (countable intersection_of P) T⟧
⟹ (countable intersection_of P) (S ∩ T)"
by (simp add: countable_intersection_of_complement countable_union_of_Un)
lemma countable_union_of_Int:
assumes S: "(countable union_of P) S" and T: "(countable union_of P) T"
and Int: "⋀S T. P S ∧ P T ⟹ P(S ∩ T)"
shows "(countable union_of P) (S ∩ T)"
proof -
obtain 𝒰 where "countable 𝒰" and 𝒰: "𝒰 ⊆ Collect P" "⋃𝒰 = S"
using S by (metis union_of_def)
obtain 𝒱 where "countable 𝒱" and 𝒱: "𝒱 ⊆ Collect P" "⋃𝒱 = T"
using T by (metis union_of_def)
have "⋀U V. ⟦U ∈ 𝒰; V ∈ 𝒱⟧ ⟹ (countable union_of P) (U ∩ V)"
using 𝒰 𝒱 by (metis Ball_Collect countable_union_of_inc local.Int)
then have "(countable union_of P) (⋃U∈𝒰. ⋃V∈𝒱. U ∩ V)"
by (meson ‹countable 𝒰› ‹countable 𝒱› countable_union_of_UN)
moreover have "S ∩ T = (⋃U∈𝒰. ⋃V∈𝒱. U ∩ V)"
by (simp add: 𝒰 𝒱)
ultimately show ?thesis
by presburger
qed
lemma countable_intersection_of_union:
assumes S: "(countable intersection_of P) S" and T: "(countable intersection_of P) T"
and Un: "⋀S T. P S ∧ P T ⟹ P(S ∪ T)"
shows "(countable intersection_of P) (S ∪ T)"
by (metis (mono_tags, lifting) Compl_Int S T Un compl_sup countable_intersection_of_complement countable_union_of_Int)
end