Theory InfDatatype
section‹Infinite-Branching Datatype Definitions›
theory InfDatatype imports Datatype Univ Finite Cardinal_AC begin
lemmas fun_Limit_VfromE =
Limit_VfromE [OF apply_funtype InfCard_csucc [THEN InfCard_is_Limit]]
lemma fun_Vcsucc_lemma:
assumes f: "f ∈ D -> Vfrom(A,csucc(K))" and DK: "|D| ≤ K" and ICK: "InfCard(K)"
shows "∃j. f ∈ D -> Vfrom(A,j) ∧ j < csucc(K)"
proof (rule exI, rule conjI)
show "f ∈ D → Vfrom(A, ⋃z∈D. μ i. f`z ∈ Vfrom (A,i))"
proof (rule Pi_type [OF f])
fix d
assume d: "d ∈ D"
show "f ` d ∈ Vfrom(A, ⋃z∈D. μ i. f ` z ∈ Vfrom(A, i))"
proof (rule fun_Limit_VfromE [OF f d ICK])
fix x
assume "x < csucc(K)" "f ` d ∈ Vfrom(A, x)"
hence "f`d ∈ Vfrom(A, μ i. f`d ∈ Vfrom (A,i))" using d
by (fast elim: LeastI ltE)
also have "... ⊆ Vfrom(A, ⋃z∈D. μ i. f ` z ∈ Vfrom(A, i))"
by (rule Vfrom_mono) (auto intro: d)
finally show "f`d ∈ Vfrom(A, ⋃z∈D. μ i. f ` z ∈ Vfrom(A, i))" .
qed
qed
next
show "(⋃d∈D. μ i. f ` d ∈ Vfrom(A, i)) < csucc(K)"
proof (rule le_UN_Ord_lt_csucc [OF ICK DK])
fix d
assume d: "d ∈ D"
show "(μ i. f ` d ∈ Vfrom(A, i)) < csucc(K)"
proof (rule fun_Limit_VfromE [OF f d ICK])
fix x
assume "x < csucc(K)" "f ` d ∈ Vfrom(A, x)"
thus "(μ i. f ` d ∈ Vfrom(A, i)) < csucc(K)"
by (blast intro: Least_le lt_trans1 lt_Ord)
qed
qed
qed
lemma subset_Vcsucc:
"⟦D ⊆ Vfrom(A,csucc(K)); |D| ≤ K; InfCard(K)⟧
⟹ ∃j. D ⊆ Vfrom(A,j) ∧ j < csucc(K)"
by (simp add: subset_iff_id fun_Vcsucc_lemma)
lemma fun_Vcsucc:
"⟦|D| ≤ K; InfCard(K); D ⊆ Vfrom(A,csucc(K))⟧ ⟹
D -> Vfrom(A,csucc(K)) ⊆ Vfrom(A,csucc(K))"
apply (safe dest!: fun_Vcsucc_lemma subset_Vcsucc)
apply (rule Vfrom [THEN ssubst])
apply (drule fun_is_rel)
apply (rule_tac a1 = "succ (succ (j ∪ ja))" in UN_I [THEN UnI2])
apply (blast intro: ltD InfCard_csucc InfCard_is_Limit Limit_has_succ
Un_least_lt)
apply (erule subset_trans [THEN PowI])
apply (fast intro: Pair_in_Vfrom Vfrom_UnI1 Vfrom_UnI2)
done
lemma fun_in_Vcsucc:
"⟦f: D -> Vfrom(A, csucc(K)); |D| ≤ K; InfCard(K);
D ⊆ Vfrom(A,csucc(K))⟧
⟹ f: Vfrom(A,csucc(K))"
by (blast intro: fun_Vcsucc [THEN subsetD])
text‹Remove ‹⊆› from the rule above›
lemmas fun_in_Vcsucc' = fun_in_Vcsucc [OF _ _ _ subsetI]
lemma Card_fun_Vcsucc:
"InfCard(K) ⟹ K -> Vfrom(A,csucc(K)) ⊆ Vfrom(A,csucc(K))"
apply (frule InfCard_is_Card [THEN Card_is_Ord])
apply (blast del: subsetI
intro: fun_Vcsucc Ord_cardinal_le i_subset_Vfrom
lt_csucc [THEN leI, THEN le_imp_subset, THEN subset_trans])
done
lemma Card_fun_in_Vcsucc:
"⟦f: K -> Vfrom(A, csucc(K)); InfCard(K)⟧ ⟹ f: Vfrom(A,csucc(K))"
by (blast intro: Card_fun_Vcsucc [THEN subsetD])
lemma Limit_csucc: "InfCard(K) ⟹ Limit(csucc(K))"
by (erule InfCard_csucc [THEN InfCard_is_Limit])
lemmas Pair_in_Vcsucc = Pair_in_VLimit [OF _ _ Limit_csucc]
lemmas Inl_in_Vcsucc = Inl_in_VLimit [OF _ Limit_csucc]
lemmas Inr_in_Vcsucc = Inr_in_VLimit [OF _ Limit_csucc]
lemmas zero_in_Vcsucc = Limit_csucc [THEN zero_in_VLimit]
lemmas nat_into_Vcsucc = nat_into_VLimit [OF _ Limit_csucc]
lemmas InfCard_nat_Un_cardinal = InfCard_Un [OF InfCard_nat Card_cardinal]
lemmas le_nat_Un_cardinal =
Un_upper2_le [OF Ord_nat Card_cardinal [THEN Card_is_Ord]]
lemmas UN_upper_cardinal = UN_upper [THEN subset_imp_lepoll, THEN lepoll_imp_cardinal_le]
lemmas Data_Arg_intros =
SigmaI InlI InrI
Pair_in_univ Inl_in_univ Inr_in_univ
zero_in_univ A_into_univ nat_into_univ UnCI
lemmas inf_datatype_intros =
InfCard_nat InfCard_nat_Un_cardinal
Pair_in_Vcsucc Inl_in_Vcsucc Inr_in_Vcsucc
zero_in_Vcsucc A_into_Vfrom nat_into_Vcsucc
Card_fun_in_Vcsucc fun_in_Vcsucc' UN_I
end