Theory Ex2
section ‹Example 3.8›
theory Ex2
imports "../LCF"
begin
axiomatization
P :: "'a ⇒ tr" and
F :: "'b ⇒ 'b" and
G :: "'a ⇒ 'a" and
H :: "'a ⇒ 'b ⇒ 'b" and
K :: "('a ⇒ 'b ⇒ 'b) ⇒ ('a ⇒ 'b ⇒ 'b)"
where
F_strict: "F(UU) = UU" and
K: "K = (λh x y. P(x) ⇒ y | F(h(G(x),y)))" and
H: "H = FIX(K)"
declare F_strict [simp] K [simp]
lemma example: "∀x. F(H(x::'a,y::'b)) = H(x,F(y))"
apply (simplesubst H)
apply (induct "K:: ('a⇒'b⇒'b) ⇒ ('a⇒'b⇒'b)")
apply simp
apply (simp split: COND_cases_iff)
done
end