Theory Locale_Test1

(*  Title:      FOL/ex/Locale_Test/Locale_Test1.thy
    Author:     Clemens Ballarin, TU Muenchen

Test environment for the locale implementation.
*)

theory Locale_Test1
imports FOL
begin

typedecl int
instance int :: term ..

consts plus :: int => int => int (infixl + 60)
  zero :: int (0)
  minus :: int => int (- _›)

axiomatization where
  int_assoc: (x + y::int) + z = x + (y + z) and
  int_zero: 0 + x = x and
  int_minus: (-x) + x = 0 and
  int_minus2: -(-x) = x

section ‹Inference of parameter types›

locale param1 = fixes p
print_locale! param1

locale param2 = fixes p :: 'b
print_locale! param2

(*
locale param_top = param2 r for r :: "'b :: {}"
  Fails, cannot generalise parameter.
*)

locale param3 = fixes p (infix .. 50)
print_locale! param3

locale param4 = fixes p :: 'a => 'a => 'a (infix .. 50)
print_locale! param4


subsection ‹Incremental type constraints›

locale constraint1 =
  fixes  prod (infixl ** 65)
  assumes l_id: x ** y = x
  assumes assoc: (x ** y) ** z = x ** (y ** z)
print_locale! constraint1

locale constraint2 =
  fixes p and q
  assumes p = q
print_locale! constraint2


section ‹Inheritance›

locale semi =
  fixes prod (infixl ** 65)
  assumes assoc: (x ** y) ** z = x ** (y ** z)
print_locale! semi thm semi_def

locale lgrp = semi +
  fixes one and inv
  assumes lone: one ** x = x
    and linv: inv(x) ** x = one
print_locale! lgrp thm lgrp_def lgrp_axioms_def

locale add_lgrp = semi (++) for sum (infixl ++ 60) +
  fixes zero and neg
  assumes lzero: zero ++ x = x
    and lneg: neg(x) ++ x = zero
print_locale! add_lgrp thm add_lgrp_def add_lgrp_axioms_def

locale rev_lgrp = semi %x y. y ++ x for sum (infixl ++ 60)
print_locale! rev_lgrp thm rev_lgrp_def

locale hom = f: semi f + g: semi g for f and g
print_locale! hom thm hom_def

locale perturbation = semi + d: semi %x y. delta(x) ** delta(y) for delta
print_locale! perturbation thm perturbation_def

locale pert_hom = d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2
print_locale! pert_hom thm pert_hom_def

text ‹Alternative expression, obtaining nicer names in semi f›.›
locale pert_hom' = semi f + d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2
print_locale! pert_hom' thm pert_hom'_def


section ‹Syntax declarations›

locale logic =
  fixes land (infixl && 55)
    and lnot (-- _› [60] 60)
  assumes assoc: (x && y) && z = x && (y && z)
    and notnot: -- (-- x) = x
begin

definition lor (infixl || 50) where
  x || y = --(-- x && -- y)

end
print_locale! logic

locale use_decl = l: logic + semi (||)
print_locale! use_decl thm use_decl_def

locale extra_type =
  fixes a :: 'a
    and P :: 'a => 'b => o
begin

definition test :: 'a => o
  where test(x)  (b. P(x, b))

end

term extra_type.test thm extra_type.test_def

interpretation var?: extra_type 0 %x y. x = 0 .

thm var.test_def


text ‹Under which circumstances notation remains active.›

ML fun check_syntax ctxt thm expected =
    let
      val obtained =
        Print_Mode.setmp [] (Thm.string_of_thm (Config.put show_markup false ctxt)) thm;
    in
      if obtained <> expected
      then error ("Theorem syntax '" ^ obtained ^ "' obtained, but '" ^ expected ^ "' expected.")
      else ()
    end;

declare [[show_hyps]]

locale "syntax" =
  fixes p1 :: 'a => 'b
    and p2 :: 'b => o
begin

definition d1 :: 'a => o (D1'(_')) where d1(x)  ¬ p2(p1(x))
definition d2 :: 'b => o (D2'(_')) where d2(x)  ¬ p2(x)

thm d1_def d2_def

end

thm syntax.d1_def syntax.d2_def

locale syntax' = "syntax" p1 p2 for p1 :: 'a => 'a and p2 :: 'a => o
begin

thm d1_def d2_def  (* should print as "D1(?x) <-> ..." and "D2(?x) <-> ..." *)

ML check_syntax context @{thm d1_def} "D1(?x) ⟷ ¬ p2(p1(?x))";
  check_syntax context @{thm d2_def} "D2(?x) ⟷ ¬ p2(?x)";

end

locale syntax'' = "syntax" p3 p2 for p3 :: 'a => 'b and p2 :: 'b => o
begin

thm d1_def d2_def
  (* should print as "d1(?x) <-> ..." and "D2(?x) <-> ..." *)

ML check_syntax context @{thm d1_def} "d1(?x) ⟷ ¬ p2(p3(?x))";
  check_syntax context @{thm d2_def} "D2(?x) ⟷ ¬ p2(?x)";

end


section ‹Foundational versions of theorems›

thm logic.assoc
thm logic.lor_def


section ‹Defines›

locale logic_def =
  fixes land (infixl && 55)
    and lor (infixl || 50)
    and lnot (-- _› [60] 60)
  assumes assoc: (x && y) && z = x && (y && z)
    and notnot: -- (-- x) = x
  defines x || y == --(-- x && -- y)
begin

thm lor_def

lemma x || y = --(-- x && --y)
  by (unfold lor_def) (rule refl)

end

(* Inheritance of defines *)

locale logic_def2 = logic_def
begin

lemma x || y = --(-- x && --y)
  by (unfold lor_def) (rule refl)

end


section ‹Notes›

(* A somewhat arcane homomorphism example *)

definition semi_hom where
  semi_hom(prod, sum, h)  (x y. h(prod(x, y)) = sum(h(x), h(y)))

lemma semi_hom_mult:
  semi_hom(prod, sum, h)  h(prod(x, y)) = sum(h(x), h(y))
  by (simp add: semi_hom_def)

locale semi_hom_loc = prod: semi prod + sum: semi sum
  for prod and sum and h +
  assumes semi_homh: semi_hom(prod, sum, h)
  notes semi_hom_mult = semi_hom_mult [OF semi_homh]

thm semi_hom_loc.semi_hom_mult
(* unspecified, attribute not applied in background theory !!! *)

lemma (in semi_hom_loc) h(prod(x, y)) = sum(h(x), h(y))
  by (rule semi_hom_mult)

(* Referring to facts from within a context specification *)

lemma
  assumes x: P  P
  notes y = x
  shows True ..


section ‹Theorem statements›

lemma (in lgrp) lcancel:
  x ** y = x ** z  y = z
proof
  assume x ** y = x ** z
  then have inv(x) ** x ** y = inv(x) ** x ** z by (simp add: assoc)
  then show y = z by (simp add: lone linv)
qed simp
print_locale! lgrp


locale rgrp = semi +
  fixes one and inv
  assumes rone: x ** one = x
    and rinv: x ** inv(x) = one
begin

lemma rcancel:
  y ** x = z ** x  y = z
proof
  assume y ** x = z ** x
  then have y ** (x ** inv(x)) = z ** (x ** inv(x))
    by (simp add: assoc [symmetric])
  then show y = z by (simp add: rone rinv)
qed simp

end
print_locale! rgrp


subsection ‹Patterns›

lemma (in rgrp)
  assumes y ** x = z ** x (is ?a)
  shows y = z (is ?t)
proof -
  txt ‹Weird proof involving patterns from context element and conclusion.›
  {
    assume ?a
    then have y ** (x ** inv(x)) = z ** (x ** inv(x))
      by (simp add: assoc [symmetric])
    then have ?t by (simp add: rone rinv)
  }
  note x = this
  show ?t by (rule x [OF ?a])
qed


section ‹Interpretation between locales: sublocales›

sublocale lgrp < right?: rgrp
print_facts
proof unfold_locales
  {
    fix x
    have inv(x) ** x ** one = inv(x) ** x by (simp add: linv lone)
    then show x ** one = x by (simp add: assoc lcancel)
  }
  note rone = this
  {
    fix x
    have inv(x) ** x ** inv(x) = inv(x) ** one
      by (simp add: linv lone rone)
    then show x ** inv(x) = one by (simp add: assoc lcancel)
  }
qed

(* effect on printed locale *)

print_locale! lgrp

(* use of derived theorem *)

lemma (in lgrp)
  y ** x = z ** x  y = z
  apply (rule rcancel)
  done

(* circular interpretation *)

sublocale rgrp < left: lgrp
proof unfold_locales
  {
    fix x
    have one ** (x ** inv(x)) = x ** inv(x) by (simp add: rinv rone)
    then show one ** x = x by (simp add: assoc [symmetric] rcancel)
  }
  note lone = this
  {
    fix x
    have inv(x) ** (x ** inv(x)) = one ** inv(x)
      by (simp add: rinv lone rone)
    then show inv(x) ** x = one by (simp add: assoc [symmetric] rcancel)
  }
qed

(* effect on printed locale *)

print_locale! rgrp
print_locale! lgrp


(* Duality *)

locale order =
  fixes less :: 'a => 'a => o (infix << 50)
  assumes refl: x << x
    and trans: [| x << y; y << z |] ==> x << z

sublocale order < dual: order %x y. y << x
  apply unfold_locales apply (rule refl) apply (blast intro: trans)
  done

print_locale! order  (* Only two instances of order. *)

locale order' =
  fixes less :: 'a => 'a => o (infix << 50)
  assumes refl: x << x
    and trans: [| x << y; y << z |] ==> x << z

locale order_with_def = order'
begin

definition greater :: 'a => 'a => o (infix >> 50) where
  x >> y  y << x

end

sublocale order_with_def < dual: order' (>>)
  apply unfold_locales
  unfolding greater_def
  apply (rule refl) apply (blast intro: trans)
  done

print_locale! order_with_def
(* Note that decls come after theorems that make use of them. *)


(* locale with many parameters ---
   interpretations generate alternating group A5 *)


locale A5 =
  fixes A and B and C and D and E
  assumes eq: A  B  C  D  E

sublocale A5 < 1: A5 _ _ D E C
print_facts
  using eq apply (blast intro: A5.intro) done

sublocale A5 < 2: A5 C _ E _ A
print_facts
  using eq apply (blast intro: A5.intro) done

sublocale A5 < 3: A5 B C A _ _
print_facts
  using eq apply (blast intro: A5.intro) done

(* Any even permutation of parameters is subsumed by the above. *)

print_locale! A5


(* Free arguments of instance *)

locale trivial =
  fixes P and Q :: o
  assumes Q: P  P  Q
begin

lemma Q_triv: Q using Q by fast

end

sublocale trivial < x: trivial x _
  apply unfold_locales using Q by fast

print_locale! trivial

context trivial
begin
thm x.Q [where ?x = True]
end

sublocale trivial < y: trivial Q Q
  by unfold_locales
  (* Succeeds since previous interpretation is more general. *)

print_locale! trivial  (* No instance for y created (subsumed). *)


subsection ‹Sublocale, then interpretation in theory›

interpretation int?: lgrp (+) 0 minus
proof unfold_locales
qed (rule int_assoc int_zero int_minus)+

thm int.assoc int.semi_axioms

interpretation int2?: semi (+)
  by unfold_locales  (* subsumed, thm int2.assoc not generated *)

ML (Global_Theory.get_thms theory "int2.assoc";
    raise Fail "thm int2.assoc was generated")
  handle ERROR _ => ([]:thm list);

thm int.lone int.right.rone
  (* the latter comes through the sublocale relation *)


subsection ‹Interpretation in theory, then sublocale›

interpretation fol: logic (+) minus
  by unfold_locales (rule int_assoc int_minus2)+

locale logic2 =
  fixes land (infixl && 55)
    and lnot (-- _› [60] 60)
  assumes assoc: (x && y) && z = x && (y && z)
    and notnot: -- (-- x) = x
begin

definition lor (infixl || 50) where
  x || y = --(-- x && -- y)

end

sublocale logic < two: logic2
  by unfold_locales (rule assoc notnot)+

thm fol.two.assoc


subsection ‹Declarations and sublocale›

locale logic_a = logic
locale logic_b = logic

sublocale logic_a < logic_b
  by unfold_locales


subsection ‹Interpretation›

subsection ‹Rewrite morphism›

locale logic_o =
  fixes land (infixl && 55)
    and lnot (-- _› [60] 60)
  assumes assoc_o: (x && y) && z  x && (y && z)
    and notnot_o: -- (-- x)  x
begin

definition lor_o (infixl || 50) where
  x || y  --(-- x && -- y)

end

interpretation x: logic_o (∧) Not
  rewrites bool_logic_o: x.lor_o(x, y)  x  y
proof -
  show bool_logic_o: PROP logic_o((∧), Not) by unfold_locales fast+
  show logic_o.lor_o((∧), Not, x, y)  x  y
    by (unfold logic_o.lor_o_def [OF bool_logic_o]) fast
qed

thm x.lor_o_def bool_logic_o

lemma lor_triv: z  z ..

lemma (in logic_o) lor_triv: x || y  x || y by fast

thm lor_triv [where z = True] (* Check strict prefix. *)
  x.lor_triv


subsection ‹Rewrite morphisms in expressions›

interpretation y: logic_o (∨) Not rewrites bool_logic_o2: logic_o.lor_o((∨), Not, x, y)  x  y
proof -
  show bool_logic_o: PROP logic_o((∨), Not) by unfold_locales fast+
  show logic_o.lor_o((∨), Not, x, y)  x  y unfolding logic_o.lor_o_def [OF bool_logic_o] by fast
qed


subsection ‹Inheritance of rewrite morphisms›

locale reflexive =
  fixes le :: 'a => 'a => o (infix  50)
  assumes refl: x  x
begin

definition less (infix  50) where x  y  x  y  x  y

end

axiomatization
  gle :: 'a => 'a => o and gless :: 'a => 'a => o and
  gle' :: 'a => 'a => o and gless' :: 'a => 'a => o
where
  grefl: gle(x, x) and gless_def: gless(x, y)  gle(x, y)  x  y and
  grefl': gle'(x, x) and gless'_def: gless'(x, y)  gle'(x, y)  x  y

text ‹Setup›

locale mixin = reflexive
begin
lemmas less_thm = less_def
end

interpretation le: mixin gle rewrites reflexive.less(gle, x, y)  gless(x, y)
proof -
  show mixin(gle) by unfold_locales (rule grefl)
  note reflexive = this[unfolded mixin_def]
  show reflexive.less(gle, x, y)  gless(x, y)
    by (simp add: reflexive.less_def[OF reflexive] gless_def)
qed

text ‹Rewrite morphism propagated along the locale hierarchy›

locale mixin2 = mixin
begin
lemmas less_thm2 = less_def
end

interpretation le: mixin2 gle
  by unfold_locales

thm le.less_thm2  (* rewrite morphism applied *)
lemma gless(x, y)  gle(x, y)  x  y
  by (rule le.less_thm2)

text ‹Rewrite morphism does not leak to a side branch.›

locale mixin3 = reflexive
begin
lemmas less_thm3 = less_def
end

interpretation le: mixin3 gle
  by unfold_locales

thm le.less_thm3  (* rewrite morphism not applied *)
lemma reflexive.less(gle, x, y)  gle(x, y)  x  y by (rule le.less_thm3)

text ‹Rewrite morphism only available in original context›

locale mixin4_base = reflexive

locale mixin4_mixin = mixin4_base

interpretation le: mixin4_mixin gle
  rewrites reflexive.less(gle, x, y)  gless(x, y)
proof -
  show mixin4_mixin(gle) by unfold_locales (rule grefl)
  note reflexive = this[unfolded mixin4_mixin_def mixin4_base_def mixin_def]
  show reflexive.less(gle, x, y)  gless(x, y)
    by (simp add: reflexive.less_def[OF reflexive] gless_def)
qed

locale mixin4_copy = mixin4_base
begin
lemmas less_thm4 = less_def
end

locale mixin4_combined = le1?: mixin4_mixin le' + le2?: mixin4_copy le for le' le
begin
lemmas less_thm4' = less_def
end

interpretation le4: mixin4_combined gle' gle
  by unfold_locales (rule grefl')

thm le4.less_thm4' (* rewrite morphism not applied *)
lemma reflexive.less(gle, x, y)  gle(x, y)  x  y
  by (rule le4.less_thm4')

text ‹Inherited rewrite morphism applied to new theorem›

locale mixin5_base = reflexive

locale mixin5_inherited = mixin5_base

interpretation le5: mixin5_base gle
  rewrites reflexive.less(gle, x, y)  gless(x, y)
proof -
  show mixin5_base(gle) by unfold_locales
  note reflexive = this[unfolded mixin5_base_def mixin_def]
  show reflexive.less(gle, x, y)  gless(x, y)
    by (simp add: reflexive.less_def[OF reflexive] gless_def)
qed

interpretation le5: mixin5_inherited gle
  by unfold_locales

lemmas (in mixin5_inherited) less_thm5 = less_def

thm le5.less_thm5  (* rewrite morphism applied *)
lemma gless(x, y)  gle(x, y)  x  y
  by (rule le5.less_thm5)

text ‹Rewrite morphism pushed down to existing inherited locale›

locale mixin6_base = reflexive

locale mixin6_inherited = mixin5_base

interpretation le6: mixin6_base gle
  by unfold_locales
interpretation le6: mixin6_inherited gle
  by unfold_locales
interpretation le6: mixin6_base gle
  rewrites reflexive.less(gle, x, y)  gless(x, y)
proof -
  show mixin6_base(gle) by unfold_locales
  note reflexive = this[unfolded mixin6_base_def mixin_def]
  show reflexive.less(gle, x, y)  gless(x, y)
    by (simp add: reflexive.less_def[OF reflexive] gless_def)
qed

lemmas (in mixin6_inherited) less_thm6 = less_def

thm le6.less_thm6  (* mixin applied *)
lemma gless(x, y)  gle(x, y)  x  y
  by (rule le6.less_thm6)

text ‹Existing rewrite morphism inherited through sublocale relation›

locale mixin7_base = reflexive

locale mixin7_inherited = reflexive

interpretation le7: mixin7_base gle
  rewrites reflexive.less(gle, x, y)  gless(x, y)
proof -
  show mixin7_base(gle) by unfold_locales
  note reflexive = this[unfolded mixin7_base_def mixin_def]
  show reflexive.less(gle, x, y)  gless(x, y)
    by (simp add: reflexive.less_def[OF reflexive] gless_def)
qed

interpretation le7: mixin7_inherited gle
  by unfold_locales

lemmas (in mixin7_inherited) less_thm7 = less_def

thm le7.less_thm7  (* before, rewrite morphism not applied *)
lemma reflexive.less(gle, x, y)  gle(x, y)  x  y
  by (rule le7.less_thm7)

sublocale mixin7_inherited < mixin7_base
  by unfold_locales

lemmas (in mixin7_inherited) less_thm7b = less_def

thm le7.less_thm7b  (* after, mixin applied *)
lemma gless(x, y)  gle(x, y)  x  y
  by (rule le7.less_thm7b)


text ‹This locale will be interpreted in later theories.›

locale mixin_thy_merge = le: reflexive le + le': reflexive le' for le le'


subsection ‹Rewrite morphisms in sublocale›

text ‹Simulate a specification of left groups where unit and inverse are defined
  rather than specified.  This is possible, but not in FOL, due to the lack of a
  selection operator.›

axiomatization glob_one and glob_inv
  where glob_lone: prod(glob_one(prod), x) = x
    and glob_linv: prod(glob_inv(prod, x), x) = glob_one(prod)

locale dgrp = semi
begin

definition one where one = glob_one(prod)

lemma lone: one ** x = x
  unfolding one_def by (rule glob_lone)

definition inv where inv(x) = glob_inv(prod, x)

lemma linv: inv(x) ** x = one
  unfolding one_def inv_def by (rule glob_linv)

end

sublocale lgrp < def?: dgrp
  rewrites one_equation: dgrp.one(prod) = one and inv_equation: dgrp.inv(prod, x) = inv(x)
proof -
  show dgrp(prod) by unfold_locales
  from this interpret d: dgrp .
  ― ‹Unit›
  have dgrp.one(prod) = glob_one(prod) by (rule d.one_def)
  also have ... = glob_one(prod) ** one by (simp add: rone)
  also have ... = one by (simp add: glob_lone)
  finally show dgrp.one(prod) = one .
  ― ‹Inverse›
  then have dgrp.inv(prod, x) ** x = inv(x) ** x by (simp add: glob_linv d.linv linv)
  then show dgrp.inv(prod, x) = inv(x) by (simp add: rcancel)
qed

print_locale! lgrp

context lgrp
begin

text ‹Equations stored in target›

lemma dgrp.one(prod) = one by (rule one_equation)
lemma dgrp.inv(prod, x) = inv(x) by (rule inv_equation)

text ‹Rewrite morphisms applied›

lemma one = glob_one(prod) by (rule one_def)
lemma inv(x) = glob_inv(prod, x) by (rule inv_def)

end

text ‹Interpreted versions›

lemma 0 = glob_one ((+)) by (rule int.def.one_def)
lemma - x = glob_inv((+), x) by (rule int.def.inv_def)

text ‹Roundup applies rewrite morphisms at declaration level in DFS tree›

locale roundup = fixes x assumes true: x  True

sublocale roundup  sub: roundup x rewrites x  True  True
  apply unfold_locales apply (simp add: true) done
lemma (in roundup) True  True  True by (rule sub.true)


section ‹Interpretation in named contexts›

locale container
begin
interpretation "private": roundup True by unfold_locales rule
lemmas true_copy = private.true
end

context container
begin
ML (Context.>> (fn generic => let val context = Context.proof_of generic
  val _ = Proof_Context.get_thms context "private.true" in generic end);
  raise Fail "thm private.true was persisted")
  handle ERROR _ => ([]:thm list);
thm true_copy
end


section ‹Interpretation in proofs›

notepad
begin
  interpret "local": lgrp (+) 0 minus
    by unfold_locales  (* subsumed *)
  {
    fix zero :: int
    assume !!x. zero + x = x !!x. (-x) + x = zero
    then interpret local_fixed: lgrp (+) zero minus
      by unfold_locales
    thm local_fixed.lone
  }
  assume !!x zero. zero + x = x !!x zero. (-x) + x = zero
  then interpret local_free: lgrp (+) zero minus for zero
    by unfold_locales
  thm local_free.lone [where ?zero = 0]
end

notepad
begin
  {
    fix pand and pnot and por
    assume passoc: x y z. pand(pand(x, y), z)  pand(x, pand(y, z))
      and pnotnot: x. pnot(pnot(x))  x
      and por_def: x y. por(x, y)  pnot(pand(pnot(x), pnot(y)))
    interpret loc: logic_o pand pnot
      rewrites por_eq: x y. logic_o.lor_o(pand, pnot, x, y)  por(x, y)  (* FIXME *)
    proof -
      show logic_o: PROP logic_o(pand, pnot) using passoc pnotnot by unfold_locales
      fix x y
      show logic_o.lor_o(pand, pnot, x, y)  por(x, y)
        by (unfold logic_o.lor_o_def [OF logic_o]) (rule por_def [symmetric])
    qed
    print_interps logic_o
    have x y. por(x, y)  pnot(pand(pnot(x), pnot(y))) by (rule loc.lor_o_def)
  }
end

end