Theory Trancl
section ‹Transitive closure of a relation›
theory Trancl
imports CCL
begin
definition trans :: "i set ⇒ o"
where "trans(r) == (ALL x y z. <x,y>:r ⟶ <y,z>:r ⟶ <x,z>:r)"
definition id :: "i set"
where "id == {p. EX x. p = <x,x>}"
definition relcomp :: "[i set,i set] ⇒ i set" (infixr "O" 60)
where "r O s == {xz. EX x y z. xz = <x,z> ∧ <x,y>:s ∧ <y,z>:r}"
definition rtrancl :: "i set ⇒ i set" ("(_^*)" [100] 100)
where "r^* == lfp(λs. id Un (r O s))"
definition trancl :: "i set ⇒ i set" ("(_^+)" [100] 100)
where "r^+ == r O rtrancl(r)"
subsection ‹Natural deduction for ‹trans(r)››
lemma transI: "(⋀x y z. ⟦<x,y>:r; <y,z>:r⟧ ⟹ <x,z>:r) ⟹ trans(r)"
unfolding trans_def by blast
lemma transD: "⟦trans(r); <a,b>:r; <b,c>:r⟧ ⟹ <a,c>:r"
unfolding trans_def by blast
subsection ‹Identity relation›
lemma idI: "<a,a> : id"
apply (unfold id_def)
apply (rule CollectI)
apply (rule exI)
apply (rule refl)
done
lemma idE: "⟦p: id; ⋀x. p = <x,x> ⟹ P⟧ ⟹ P"
apply (unfold id_def)
apply (erule CollectE)
apply blast
done
subsection ‹Composition of two relations›
lemma compI: "⟦<a,b>:s; <b,c>:r⟧ ⟹ <a,c> : r O s"
unfolding relcomp_def by blast
lemma compE: "⟦xz : r O s; ⋀x y z. ⟦xz = <x,z>; <x,y>:s; <y,z>:r⟧ ⟹ P⟧ ⟹ P"
unfolding relcomp_def by blast
lemma compEpair: "⟦<a,c> : r O s; ⋀y. ⟦<a,y>:s; <y,c>:r⟧ ⟹ P⟧ ⟹ P"
apply (erule compE)
apply (simp add: pair_inject)
done
lemmas [intro] = compI idI
and [elim] = compE idE
lemma comp_mono: "⟦r'<=r; s'<=s⟧ ⟹ (r' O s') <= (r O s)"
by blast
subsection ‹The relation rtrancl›
lemma rtrancl_fun_mono: "mono(λs. id Un (r O s))"
apply (rule monoI)
apply (rule monoI subset_refl comp_mono Un_mono)+
apply assumption
done
lemma rtrancl_unfold: "r^* = id Un (r O r^*)"
by (rule rtrancl_fun_mono [THEN rtrancl_def [THEN def_lfp_Tarski]])
lemma rtrancl_refl: "<a,a> : r^*"
apply (subst rtrancl_unfold)
apply blast
done
lemma rtrancl_into_rtrancl: "⟦<a,b> : r^*; <b,c> : r⟧ ⟹ <a,c> : r^*"
apply (subst rtrancl_unfold)
apply blast
done
lemma r_into_rtrancl: "<a,b> : r ⟹ <a,b> : r^*"
apply (rule rtrancl_refl [THEN rtrancl_into_rtrancl])
apply assumption
done
subsection ‹standard induction rule›
lemma rtrancl_full_induct:
"⟦<a,b> : r^*;
⋀x. P(<x,x>);
⋀x y z. ⟦P(<x,y>); <x,y>: r^*; <y,z>: r⟧ ⟹ P(<x,z>)⟧
⟹ P(<a,b>)"
apply (erule def_induct [OF rtrancl_def])
apply (rule rtrancl_fun_mono)
apply blast
done
lemma rtrancl_induct:
"⟦<a,b> : r^*;
P(a);
⋀y z. ⟦<a,y> : r^*; <y,z> : r; P(y)⟧ ⟹ P(z) ⟧
⟹ P(b)"
apply (subgoal_tac "ALL y. <a,b> = <a,y> ⟶ P(y)")
apply blast
apply (erule rtrancl_full_induct)
apply blast
apply blast
done
lemma trans_rtrancl: "trans(r^*)"
apply (rule transI)
apply (rule_tac b = z in rtrancl_induct)
apply (fast elim: rtrancl_into_rtrancl)+
done
lemma rtranclE:
"⟦<a,b> : r^*; a = b ⟹ P; ⋀y. ⟦<a,y> : r^*; <y,b> : r⟧ ⟹ P⟧ ⟹ P"
apply (subgoal_tac "a = b | (EX y. <a,y> : r^* ∧ <y,b> : r)")
prefer 2
apply (erule rtrancl_induct)
apply blast
apply blast
apply blast
done
subsection ‹The relation trancl›
subsubsection ‹Conversions between trancl and rtrancl›
lemma trancl_into_rtrancl: "<a,b> : r^+ ⟹ <a,b> : r^*"
apply (unfold trancl_def)
apply (erule compEpair)
apply (erule rtrancl_into_rtrancl)
apply assumption
done
lemma r_into_trancl: "<a,b> : r ⟹ <a,b> : r^+"
unfolding trancl_def by (blast intro: rtrancl_refl)
lemma rtrancl_into_trancl1: "⟦<a,b> : r^*; <b,c> : r⟧ ⟹ <a,c> : r^+"
unfolding trancl_def by blast
lemma rtrancl_into_trancl2: "⟦<a,b> : r; <b,c> : r^*⟧ ⟹ <a,c> : r^+"
apply (erule rtranclE)
apply (erule subst)
apply (erule r_into_trancl)
apply (rule trans_rtrancl [THEN transD, THEN rtrancl_into_trancl1])
apply (assumption | rule r_into_rtrancl)+
done
lemma tranclE:
"⟦<a,b> : r^+;
<a,b> : r ⟹ P;
⋀y. ⟦<a,y> : r^+; <y,b> : r⟧ ⟹ P⟧ ⟹ P"
apply (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ ∧ <y,b> : r)")
apply blast
apply (unfold trancl_def)
apply (erule compEpair)
apply (erule rtranclE)
apply blast
apply (blast intro!: rtrancl_into_trancl1)
done
lemma trans_trancl: "trans(r^+)"
apply (unfold trancl_def)
apply (rule transI)
apply (erule compEpair)+
apply (erule rtrancl_into_rtrancl [THEN trans_rtrancl [THEN transD, THEN compI]])
apply assumption+
done
lemma trancl_into_trancl2: "⟦<a,b> : r; <b,c> : r^+⟧ ⟹ <a,c> : r^+"
by (rule r_into_trancl [THEN trans_trancl [THEN transD]])
end