Theory Hered
section ‹Hereditary Termination -- cf. Martin Lo\"f›
theory Hered
imports Type
begin
text ‹
Note that this is based on an untyped equality and so ‹lam
x. b(x)› is only hereditarily terminating if ‹ALL x. b(x)›
is. Not so useful for functions!
›
definition HTTgen :: "i set ⇒ i set" where
"HTTgen(R) ==
{t. t=true | t=false | (EX a b. t= <a, b> ∧ a : R ∧ b : R) |
(EX f. t = lam x. f(x) ∧ (ALL x. f(x) : R))}"
definition HTT :: "i set"
where "HTT == gfp(HTTgen)"
subsection ‹Hereditary Termination›
lemma HTTgen_mono: "mono(λX. HTTgen(X))"
apply (unfold HTTgen_def)
apply (rule monoI)
apply blast
done
lemma HTTgenXH:
"t : HTTgen(A) ⟷ t=true | t=false | (EX a b. t=<a,b> ∧ a : A ∧ b : A) |
(EX f. t=lam x. f(x) ∧ (ALL x. f(x) : A))"
apply (unfold HTTgen_def)
apply blast
done
lemma HTTXH:
"t : HTT ⟷ t=true | t=false | (EX a b. t=<a,b> ∧ a : HTT ∧ b : HTT) |
(EX f. t=lam x. f(x) ∧ (ALL x. f(x) : HTT))"
apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def])
apply blast
done
subsection ‹Introduction Rules for HTT›
lemma HTT_bot: "¬ bot : HTT"
by (blast dest: HTTXH [THEN iffD1])
lemma HTT_true: "true : HTT"
by (blast intro: HTTXH [THEN iffD2])
lemma HTT_false: "false : HTT"
by (blast intro: HTTXH [THEN iffD2])
lemma HTT_pair: "<a,b> : HTT ⟷ a : HTT ∧ b : HTT"
apply (rule HTTXH [THEN iff_trans])
apply blast
done
lemma HTT_lam: "lam x. f(x) : HTT ⟷ (ALL x. f(x) : HTT)"
apply (rule HTTXH [THEN iff_trans])
apply auto
done
lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam
lemma HTT_rews2:
"one : HTT"
"inl(a) : HTT ⟷ a : HTT"
"inr(b) : HTT ⟷ b : HTT"
"zero : HTT"
"succ(n) : HTT ⟷ n : HTT"
"[] : HTT"
"x$xs : HTT ⟷ x : HTT ∧ xs : HTT"
by (simp_all add: data_defs HTT_rews1)
lemmas HTT_rews = HTT_rews1 HTT_rews2
subsection ‹Coinduction for HTT›
lemma HTT_coinduct: "⟦t : R; R <= HTTgen(R)⟧ ⟹ t : HTT"
apply (erule HTT_def [THEN def_coinduct])
apply assumption
done
lemma HTT_coinduct3: "⟦t : R; R <= HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))⟧ ⟹ t : HTT"
apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]])
apply assumption
done
lemma HTTgenIs:
"true : HTTgen(R)"
"false : HTTgen(R)"
"⟦a : R; b : R⟧ ⟹ <a,b> : HTTgen(R)"
"⋀b. (⋀x. b(x) : R) ⟹ lam x. b(x) : HTTgen(R)"
"one : HTTgen(R)"
"a : lfp(λx. HTTgen(x) Un R Un HTT) ⟹ inl(a) : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
"b : lfp(λx. HTTgen(x) Un R Un HTT) ⟹ inr(b) : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
"zero : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
"n : lfp(λx. HTTgen(x) Un R Un HTT) ⟹ succ(n) : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
"[] : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
"⟦h : lfp(λx. HTTgen(x) Un R Un HTT); t : lfp(λx. HTTgen(x) Un R Un HTT)⟧ ⟹
h$t : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
unfolding data_defs by (genIs HTTgenXH HTTgen_mono)+
subsection ‹Formation Rules for Types›
lemma UnitF: "Unit <= HTT"
by (simp add: subsetXH UnitXH HTT_rews)
lemma BoolF: "Bool <= HTT"
by (fastforce simp: subsetXH BoolXH iff: HTT_rews)
lemma PlusF: "⟦A <= HTT; B <= HTT⟧ ⟹ A + B <= HTT"
by (fastforce simp: subsetXH PlusXH iff: HTT_rews)
lemma SigmaF: "⟦A <= HTT; ⋀x. x:A ⟹ B(x) <= HTT⟧ ⟹ SUM x:A. B(x) <= HTT"
by (fastforce simp: subsetXH SgXH HTT_rews)
lemma "Nat <= HTT"
apply (simp add: subsetXH)
apply clarify
apply (erule Nat_ind)
apply (fastforce iff: HTT_rews)+
done
lemma NatF: "Nat <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1])
done
lemma ListF: "A <= HTT ⟹ List(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]]
dest: ListXH [THEN iffD1])
done
lemma ListsF: "A <= HTT ⟹ Lists(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1])
done
lemma IListsF: "A <= HTT ⟹ ILists(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1])
done
end