Theory Force
theory Force imports Main begin
declare div_mult_self_is_m [simp del]
lemma div_mult_self_is_m:
"0<n ⟹ (m*n) div n = (m::nat)"
apply (insert div_mult_mod_eq [of "m*n" n])
apply simp
done
lemma "(∀x. P x) ∧ (∃x. Q x) ⟶ (∀x. P x ∧ Q x)"
apply clarify
oops
text ‹
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{1}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
{\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isasymexists}x{\isachardot}\ Q\ x{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymand}\ Q\ x{\isacharparenright}\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ xa{\isachardot}\ {\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x{\isacharsemicolon}\ Q\ xa{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ x\ {\isasymand}\ Q\ x
›
text ‹
couldn't find a good example of clarsimp
@{thm[display]"someI"}
\rulename{someI}
›
lemma "⟦Q a; P a⟧ ⟹ P (SOME x. P x ∧ Q x) ∧ Q (SOME x. P x ∧ Q x)"
apply (rule someI)
oops
lemma "⟦Q a; P a⟧ ⟹ P (SOME x. P x ∧ Q x) ∧ Q (SOME x. P x ∧ Q x)"
apply (fast intro!: someI)
done
text‹
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ \isadigit{1}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
{\isasymlbrakk}Q\ a{\isacharsemicolon}\ P\ a{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}SOME\ x{\isachardot}\ P\ x\ {\isasymand}\ Q\ x{\isacharparenright}\ {\isasymand}\ Q\ {\isacharparenleft}SOME\ x{\isachardot}\ P\ x\ {\isasymand}\ Q\ x{\isacharparenright}\isanewline
\ \isadigit{1}{\isachardot}\ {\isasymlbrakk}Q\ a{\isacharsemicolon}\ P\ a{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharquery}x\ {\isasymand}\ Q\ {\isacharquery}x
›
end