Theory Basic
theory Basic imports Main begin
lemma conj_rule: "⟦ P; Q ⟧ ⟹ P ∧ (Q ∧ P)"
apply (rule conjI)
apply assumption
apply (rule conjI)
apply assumption
apply assumption
done
lemma disj_swap: "P | Q ⟹ Q | P"
apply (erule disjE)
apply (rule disjI2)
apply assumption
apply (rule disjI1)
apply assumption
done
lemma conj_swap: "P ∧ Q ⟹ Q ∧ P"
apply (rule conjI)
apply (drule conjunct2)
apply assumption
apply (drule conjunct1)
apply assumption
done
lemma imp_uncurry: "P ⟶ Q ⟶ R ⟹ P ∧ Q ⟶ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption
apply (drule mp)
apply assumption
apply assumption
done
text ‹
by eliminates uses of assumption and done
›
lemma imp_uncurry': "P ⟶ Q ⟶ R ⟹ P ∧ Q ⟶ R"
apply (rule impI)
apply (erule conjE)
apply (drule mp)
apply assumption
by (drule mp)
text ‹
substitution
@{thm[display] ssubst}
\rulename{ssubst}
›
lemma "⟦ x = f x; P(f x) ⟧ ⟹ P x"
by (erule ssubst)
text ‹
also provable by simp (re-orients)
›
text ‹
the subst method
@{thm[display] mult.commute}
\rulename{mult.commute}
this would fail:
apply (simp add: mult.commute)
›
lemma "⟦P x y z; Suc x < y⟧ ⟹ f z = x*y"
txt‹
@{subgoals[display,indent=0,margin=65]}
›
apply (subst mult.commute)
txt‹
@{subgoals[display,indent=0,margin=65]}
›
oops
lemma "⟦P x y z; Suc x < y⟧ ⟹ f z = x*y"
apply (rule mult.commute [THEN ssubst])
oops
lemma "⟦x = f x; triple (f x) (f x) x⟧ ⟹ triple x x x"
apply (erule ssubst)
back
back
back
back
apply assumption
done
lemma "⟦ x = f x; triple (f x) (f x) x ⟧ ⟹ triple x x x"
apply (erule ssubst, assumption)
done
text‹
or better still
›
lemma "⟦ x = f x; triple (f x) (f x) x ⟧ ⟹ triple x x x"
by (erule ssubst)
lemma "⟦ x = f x; triple (f x) (f x) x ⟧ ⟹ triple x x x"
apply (erule_tac P="λu. triple u u x" in ssubst)
apply (assumption)
done
lemma "⟦ x = f x; triple (f x) (f x) x ⟧ ⟹ triple x x x"
by (erule_tac P="λu. triple u u x" in ssubst)
text ‹
negation
@{thm[display] notI}
\rulename{notI}
@{thm[display] notE}
\rulename{notE}
@{thm[display] classical}
\rulename{classical}
@{thm[display] contrapos_pp}
\rulename{contrapos_pp}
@{thm[display] contrapos_pn}
\rulename{contrapos_pn}
@{thm[display] contrapos_np}
\rulename{contrapos_np}
@{thm[display] contrapos_nn}
\rulename{contrapos_nn}
›
lemma "⟦¬(P⟶Q); ¬(R⟶Q)⟧ ⟹ R"
apply (erule_tac Q="R⟶Q" in contrapos_np)
apply (intro impI)
by (erule notE)
text ‹
@{thm[display] disjCI}
\rulename{disjCI}
›
lemma "(P ∨ Q) ∧ R ⟹ P ∨ Q ∧ R"
apply (intro disjCI conjI)
apply (elim conjE disjE)
apply assumption
by (erule contrapos_np, rule conjI)
text‹
proof\ {\isacharparenleft}prove{\isacharparenright}{\isacharcolon}\ step\ {\isadigit{6}}\isanewline
\isanewline
goal\ {\isacharparenleft}lemma{\isacharparenright}{\isacharcolon}\isanewline
{\isacharparenleft}P\ {\isasymor}\ Q{\isacharparenright}\ {\isasymand}\ R\ {\isasymLongrightarrow}\ P\ {\isasymor}\ Q\ {\isasymand}\ R\isanewline
\ {\isadigit{1}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q\isanewline
\ {\isadigit{2}}{\isachardot}\ {\isasymlbrakk}R{\isacharsemicolon}\ Q{\isacharsemicolon}\ {\isasymnot}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ R
›
text‹rule_tac, etc.›
lemma "P&Q"
apply (rule_tac P=P and Q=Q in conjI)
oops
text‹unification failure trace›
declare [[unify_trace_failure = true]]
lemma "P(a, f(b, g(e,a), b), a) ⟹ P(a, f(b, g(c,a), b), a)"
txt‹
@{subgoals[display,indent=0,margin=65]}
apply assumption
Clash: e =/= c
Clash: == =/= Trueprop
›
oops
lemma "∀x y. P(x,y) --> P(y,x)"
apply auto
txt‹
@{subgoals[display,indent=0,margin=65]}
apply assumption
Clash: bound variable x (depth 1) =/= bound variable y (depth 0)
Clash: == =/= Trueprop
Clash: == =/= Trueprop
›
oops
declare [[unify_trace_failure = false]]
text‹Quantifiers›
text ‹
@{thm[display] allI}
\rulename{allI}
@{thm[display] allE}
\rulename{allE}
@{thm[display] spec}
\rulename{spec}
›
lemma "∀x. P x ⟶ P x"
apply (rule allI)
by (rule impI)
lemma "(∀x. P ⟶ Q x) ⟹ P ⟶ (∀x. Q x)"
apply (rule impI, rule allI)
apply (drule spec)
by (drule mp)
text‹rename_tac›
lemma "x < y ⟹ ∀x y. P x (f y)"
apply (intro allI)
apply (rename_tac v w)
oops
lemma "⟦∀x. P x ⟶ P (h x); P a⟧ ⟹ P(h (h a))"
apply (frule spec)
apply (drule mp, assumption)
apply (drule spec)
by (drule mp)
lemma "⟦∀x. P x ⟶ P (f x); P a⟧ ⟹ P(f (f a))"
by blast
text‹
the existential quantifier›
text ‹
@{thm[display]"exI"}
\rulename{exI}
@{thm[display]"exE"}
\rulename{exE}
›
text‹
instantiating quantifiers explicitly by rule_tac and erule_tac›
lemma "⟦∀x. P x ⟶ P (h x); P a⟧ ⟹ P(h (h a))"
apply (frule spec)
apply (drule mp, assumption)
apply (drule_tac x = "h a" in spec)
by (drule mp)
text ‹
@{thm[display]"dvd_def"}
\rulename{dvd_def}
›
lemma mult_dvd_mono: "⟦i dvd m; j dvd n⟧ ⟹ i*j dvd (m*n :: nat)"
apply (simp add: dvd_def)
apply (erule exE)
apply (erule exE)
apply (rename_tac l)
apply (rule_tac x="k*l" in exI)
apply simp
done
text‹
Hilbert-epsilon theorems›
text‹
@{thm[display] the_equality[no_vars]}
\rulename{the_equality}
@{thm[display] some_equality[no_vars]}
\rulename{some_equality}
@{thm[display] someI[no_vars]}
\rulename{someI}
@{thm[display] someI2[no_vars]}
\rulename{someI2}
@{thm[display] someI_ex[no_vars]}
\rulename{someI_ex}
needed for examples
@{thm[display] inv_def[no_vars]}
\rulename{inv_def}
@{thm[display] Least_def[no_vars]}
\rulename{Least_def}
@{thm[display] order_antisym[no_vars]}
\rulename{order_antisym}
›
lemma "inv Suc (Suc n) = n"
by (simp add: inv_def)
text‹but we know nothing about inv Suc 0›
theorem Least_equality:
"⟦ P (k::nat); ∀x. P x ⟶ k ≤ x ⟧ ⟹ (LEAST x. P(x)) = k"
apply (simp add: Least_def)
txt‹
@{subgoals[display,indent=0,margin=65]}
›
apply (rule the_equality)
txt‹
@{subgoals[display,indent=0,margin=65]}
first subgoal is existence; second is uniqueness
›
by (auto intro: order_antisym)
theorem axiom_of_choice:
"(∀x. ∃y. P x y) ⟹ ∃f. ∀x. P x (f x)"
apply (rule exI, rule allI)
txt‹
@{subgoals[display,indent=0,margin=65]}
state after intro rules
›
apply (drule spec, erule exE)
txt‹
@{subgoals[display,indent=0,margin=65]}
applying @text{someI} automatically instantiates
\<^term>‹f› to \<^term>‹λx. SOME y. P x y›
›
by (rule someI)
lemma "[| P (k::nat); ∀x. P x ⟶ k ≤ x |] ==> (LEAST x. P(x)) = k"
apply (simp add: Least_def)
by (blast intro: order_antisym)
theorem axiom_of_choice': "(∀x. ∃y. P x y) ⟹ ∃f. ∀x. P x (f x)"
apply (rule exI [of _ "λx. SOME y. P x y"])
by (blast intro: someI)
text‹end of Epsilon section›
lemma "(∃x. P x) ∨ (∃x. Q x) ⟹ ∃x. P x ∨ Q x"
apply (elim exE disjE)
apply (intro exI disjI1)
apply assumption
apply (intro exI disjI2)
apply assumption
done
lemma "(P⟶Q) ∨ (Q⟶P)"
apply (intro disjCI impI)
apply (elim notE)
apply (intro impI)
apply assumption
done
lemma "(P∨Q)∧(P∨R) ⟹ P ∨ (Q∧R)"
apply (intro disjCI conjI)
apply (elim conjE disjE)
apply blast
apply blast
apply blast
apply blast
done
lemma "(∃x. P ∧ Q x) ⟹ P ∧ (∃x. Q x)"
apply (erule exE)
apply (erule conjE)
apply (rule conjI)
apply assumption
apply (rule exI)
apply assumption
done
lemma "(∃x. P x) ∧ (∃x. Q x) ⟹ ∃x. P x ∧ Q x"
apply (erule conjE)
apply (erule exE)
apply (erule exE)
apply (rule exI)
apply (rule conjI)
apply assumption
oops
lemma "∀y. R y y ⟹ ∃x. ∀y. R x y"
apply (rule exI)
apply (rule allI)
apply (drule spec)
oops
lemma "∀x. ∃y. x=y"
apply (rule allI)
apply (rule exI)
apply (rule refl)
done
lemma "∃x. ∀y. x=y"
apply (rule exI)
apply (rule allI)
oops
end