Theory ZF_examples
section‹Examples of Reasoning in ZF Set Theory›
theory ZF_examples imports ZFC begin
subsection ‹Binary Trees›
consts
bt :: "i => i"
datatype "bt(A)" =
Lf | Br ("a ∈ A", "t1 ∈ bt(A)", "t2 ∈ bt(A)")
declare bt.intros [simp]
text‹Induction via tactic emulation›
lemma Br_neq_left [rule_format]: "l ∈ bt(A) ==> ∀x r. Br(x, l, r) ≠ l"
apply (induct_tac l)
apply auto
done
text‹The new induction method, which I don't understand›
lemma Br_neq_left': "l ∈ bt(A) ==> (!!x r. Br(x, l, r) ≠ l)"
apply (induct set: bt)
apply auto
done
lemma Br_iff: "Br(a,l,r) = Br(a',l',r') <-> a=a' & l=l' & r=r'"
by (blast elim!: bt.free_elims)
inductive_cases Br_in_bt: "Br(a,l,r) ∈ bt(A)"
text ‹
@{thm[display] Br_in_bt[no_vars]}
›
subsection‹Primitive recursion›
consts n_nodes :: "i => i"
primrec
"n_nodes(Lf) = 0"
"n_nodes(Br(a,l,r)) = succ(n_nodes(l) #+ n_nodes(r))"
lemma n_nodes_type [simp]: "t ∈ bt(A) ==> n_nodes(t) ∈ nat"
by (induct_tac t, auto)
consts n_nodes_aux :: "i => i"
primrec
"n_nodes_aux(Lf) = (λk ∈ nat. k)"
"n_nodes_aux(Br(a,l,r)) =
(λk ∈ nat. n_nodes_aux(r) ` (n_nodes_aux(l) ` succ(k)))"
lemma n_nodes_aux_eq [rule_format]:
"t ∈ bt(A) ==> ∀k ∈ nat. n_nodes_aux(t)`k = n_nodes(t) #+ k"
by (induct_tac t, simp_all)
definition n_nodes_tail :: "i => i" where
"n_nodes_tail(t) == n_nodes_aux(t) ` 0"
lemma "t ∈ bt(A) ==> n_nodes_tail(t) = n_nodes(t)"
by (simp add: n_nodes_tail_def n_nodes_aux_eq)
subsection ‹Inductive definitions›
consts Fin :: "i=>i"
inductive
domains "Fin(A)" ⊆ "Pow(A)"
intros
emptyI: "0 ∈ Fin(A)"
consI: "[| a ∈ A; b ∈ Fin(A) |] ==> cons(a,b) ∈ Fin(A)"
type_intros empty_subsetI cons_subsetI PowI
type_elims PowD [elim_format]
consts acc :: "i => i"
inductive
domains "acc(r)" ⊆ "field(r)"
intros
vimage: "[| r-``{a}: Pow(acc(r)); a ∈ field(r) |] ==> a ∈ acc(r)"
monos Pow_mono
consts
llist :: "i=>i"
codatatype
"llist(A)" = LNil | LCons ("a ∈ A", "l ∈ llist(A)")
consts
lleq :: "i=>i"
coinductive
domains "lleq(A)" ⊆ "llist(A) * llist(A)"
intros
LNil: "<LNil, LNil> ∈ lleq(A)"
LCons: "[| a ∈ A; <l,l'> ∈ lleq(A) |]
==> <LCons(a,l), LCons(a,l')> ∈ lleq(A)"
type_intros llist.intros
subsection‹Powerset example›
lemma Pow_mono: "A⊆B ==> Pow(A) ⊆ Pow(B)"
apply (rule subsetI)
apply (rule PowI)
apply (drule PowD)
apply (erule subset_trans, assumption)
done
lemma "Pow(A Int B) = Pow(A) Int Pow(B)"
apply (rule equalityI)
apply (rule Int_greatest)
apply (rule Int_lower1 [THEN Pow_mono])
apply (rule Int_lower2 [THEN Pow_mono])
apply (rule subsetI)
apply (erule IntE)
apply (rule PowI)
apply (drule PowD)+
apply (rule Int_greatest)
apply (assumption+)
done
text‹Trying again from the beginning in order to use ‹blast››
lemma "Pow(A Int B) = Pow(A) Int Pow(B)"
by blast
lemma "C⊆D ==> Union(C) ⊆ Union(D)"
apply (rule subsetI)
apply (erule UnionE)
apply (rule UnionI)
apply (erule subsetD)
apply assumption
apply assumption
done
text‹A more abstract version of the same proof›
lemma "C⊆D ==> Union(C) ⊆ Union(D)"
apply (rule Union_least)
apply (rule Union_upper)
apply (erule subsetD, assumption)
done
lemma "[| a ∈ A; f ∈ A->B; g ∈ C->D; A ∩ C = 0 |] ==> (f ∪ g)`a = f`a"
apply (rule apply_equality)
apply (rule UnI1)
apply (rule apply_Pair)
apply assumption
apply assumption
apply (rule fun_disjoint_Un)
apply assumption
apply assumption
apply assumption
done
end