Theory If
theory If imports FOL begin
definition "if" :: "[o,o,o]=>o" where
"if(P,Q,R) == P&Q | ~P&R"
lemma ifI:
"[| P ==> Q; ~P ==> R |] ==> if(P,Q,R)"
apply (simp add: if_def)
apply blast
done
lemma ifE:
"[| if(P,Q,R); [| P; Q |] ==> S; [| ~P; R |] ==> S |] ==> S"
apply (simp add: if_def)
apply blast
done
lemma if_commute: "if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
apply (rule iffI)
apply (erule ifE)
apply (erule ifE)
apply (rule ifI)
apply (rule ifI)
oops
text‹Trying again from the beginning in order to use ‹blast››
declare ifI [intro!]
declare ifE [elim!]
lemma if_commute: "if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
by blast
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"
by blast
text‹Trying again from the beginning in order to prove from the definitions›
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"
apply (simp add: if_def)
apply blast
done
text‹An invalid formula. High-level rules permit a simpler diagnosis›
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"
apply auto
apply (tactic all_tac)
oops
text‹Trying again from the beginning in order to prove from the definitions›
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"
apply (simp add: if_def)
apply (auto)
apply (tactic all_tac)
oops
end