Theory IFOL_examples

section‹Examples of Intuitionistic Reasoning›

theory IFOL_examples imports IFOL begin

text‹Quantifier example from the book Logic and Computation›
lemma "(EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (rule impI)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (rule allI)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (rule exI)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (erule exE)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (erule allE)
  ― ‹@{subgoals[display,indent=0,margin=65]}
txt‹Now apply assumption› fails›
oops

text‹Trying again, with the same first two steps›
lemma "(EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (rule impI)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (rule allI)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (erule exE)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (rule exI)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (erule allE)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply assumption
  ― ‹@{subgoals[display,indent=0,margin=65]}
done

lemma "(EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
by (tactic IntPr.fast_tac context 1)

text‹Example of Dyckhoff's method›
lemma "~ ~ ((P-->Q) | (Q-->P))"
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (unfold not_def)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (rule impI)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (erule disj_impE)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply (erule imp_impE)
  ― ‹@{subgoals[display,indent=0,margin=65]}
 apply (erule imp_impE)
  ― ‹@{subgoals[display,indent=0,margin=65]}
apply assumption 
apply (erule FalseE)+
done

end