Theory Document
theory Document
imports Main
begin
section ‹Abstract›
text ‹
\small
Isabelle is a formal document preparation system. This example shows how to
use it together with Foil{\TeX} to produce slides in {\LaTeX}. See
🌐‹https://ctan.org/pkg/foiltex› for further information.
›
chapter ‹Introduction›
section ‹Some slide›
paragraph ‹Point 1:
\plainstyle ABC›
text ‹
▪ something
▪ to say \dots
›
paragraph ‹Point 2:
\plainstyle XYZ›
text ‹
▪ more
▪ to say \dots
›
section ‹Another slide›
paragraph ‹Key definitions:›
text ‹Informal bla bla.›
definition "foo = True"
definition "bar = False"
lemma foo unfolding foo_def ..
chapter ‹Application: Cantor's theorem›
section ‹Informal notes›
text_raw ‹\isakeeptag{proof}›
text ‹
Cantor's Theorem states that there is no surjection from
a set to its powerset. The proof works by diagonalization. E.g.\ see
▪ 🌐‹http://mathworld.wolfram.com/CantorDiagonalMethod.html›
▪ 🌐‹https://en.wikipedia.org/wiki/Cantor's_diagonal_argument›
›
section ‹Formal proof›
theorem Cantor: "∄f :: 'a ⇒ 'a set. ∀A. ∃x. A = f x"
proof
assume "∃f :: 'a ⇒ 'a set. ∀A. ∃x. A = f x"
then obtain f :: "'a ⇒ 'a set" where *: "∀A. ∃x. A = f x" ..
let ?D = "{x. x ∉ f x}"
from * obtain a where "?D = f a" by blast
moreover have "a ∈ ?D ⟷ a ∉ f a" by blast
ultimately show False by blast
qed
chapter ‹Conclusion›
section ‹Lorem ipsum dolor›
text ‹
▪ Lorem ipsum dolor sit amet, consectetur adipiscing elit.
▪ Donec id ipsum sapien.
▪ Vivamus malesuada enim nibh, a tristique nisi sodales ac.
▪ Praesent ut sem consectetur, interdum tellus ac, sodales nulla.
›
end