Theory Group

(*  Title:      ZF/ex/Group.thy *)

section ‹Groups›

theory Group imports ZF begin

text‹Based on work by Clemens Ballarin, Florian Kammueller, L C Paulson and
Markus Wenzel.›


subsection ‹Monoids›

(*First, we must simulate a record declaration:
record monoid =
  carrier :: i
  mult :: "[i,i] ⇒ i" (infixl "⋅ı" 70)
  one :: i ("𝟭ı")
*)

definition
  carrier :: "i  i" where
  "carrier(M)  fst(M)"

definition
  mmult :: "[i, i, i]  i" (infixl ı› 70) where
  "mmult(M,x,y)  fst(snd(M)) ` x,y"

definition
  one :: "i  i" (𝟭ı›) where
  "one(M)  fst(snd(snd(M)))"

definition
  update_carrier :: "[i,i]  i" where
  "update_carrier(M,A)  <A,snd(M)>"

definition
  m_inv :: "i  i  i" (invı _› [81] 80) where
  "invGx  (THE y. y  carrier(G)  y Gx = 𝟭G x Gy = 𝟭G)"

locale monoid = fixes G (structure)
  assumes m_closed [intro, simp]:
         "x  carrier(G); y  carrier(G)  x  y  carrier(G)"
      and m_assoc:
         "x  carrier(G); y  carrier(G); z  carrier(G)
           (x  y)  z = x  (y  z)"
      and one_closed [intro, simp]: "𝟭  carrier(G)"
      and l_one [simp]: "x  carrier(G)  𝟭  x = x"
      and r_one [simp]: "x  carrier(G)  x  𝟭 = x"

text‹Simulating the record›
lemma carrier_eq [simp]: "carrier(A,Z) = A"
  by (simp add: carrier_def)

lemma mult_eq [simp]: "mmult(<A,M,Z>, x, y) = M ` x,y"
  by (simp add: mmult_def)

lemma one_eq [simp]: "one(<A,M,I,Z>) = I"
  by (simp add: one_def)

lemma update_carrier_eq [simp]: "update_carrier(A,Z,B) = B,Z"
  by (simp add: update_carrier_def)

lemma carrier_update_carrier [simp]: "carrier(update_carrier(M,B)) = B"
  by (simp add: update_carrier_def)

lemma mult_update_carrier [simp]: "mmult(update_carrier(M,B),x,y) = mmult(M,x,y)"
  by (simp add: update_carrier_def mmult_def)

lemma one_update_carrier [simp]: "one(update_carrier(M,B)) = one(M)"
  by (simp add: update_carrier_def one_def)


lemma (in monoid) inv_unique:
  assumes eq: "y  x = 𝟭"  "x  y' = 𝟭"
    and G: "x  carrier(G)"  "y  carrier(G)"  "y'  carrier(G)"
  shows "y = y'"
proof -
  from G eq have "y = y  (x  y')" by simp
  also from G have "... = (y  x)  y'" by (simp add: m_assoc)
  also from G eq have "... = y'" by simp
  finally show ?thesis .
qed

text ‹
  A group is a monoid all of whose elements are invertible.
›

locale group = monoid +
  assumes inv_ex:
     "x. x  carrier(G)  y  carrier(G). y  x = 𝟭  x  y = 𝟭"

lemma (in group) is_group [simp]: "group(G)" by (rule group_axioms)

theorem groupI:
  fixes G (structure)
  assumes m_closed [simp]:
      "x y. x  carrier(G); y  carrier(G)  x  y  carrier(G)"
    and one_closed [simp]: "𝟭  carrier(G)"
    and m_assoc:
      "x y z. x  carrier(G); y  carrier(G); z  carrier(G) 
      (x  y)  z = x  (y  z)"
    and l_one [simp]: "x. x  carrier(G)  𝟭  x = x"
    and l_inv_ex: "x. x  carrier(G)  y  carrier(G). y  x = 𝟭"
  shows "group(G)"
proof -
  have l_cancel [simp]:
    "x y z. x  carrier(G); y  carrier(G); z  carrier(G) 
    (x  y = x  z)  (y = z)"
  proof
    fix x y z
    assume G: "x  carrier(G)"  "y  carrier(G)"  "z  carrier(G)"
    {
      assume eq: "x  y = x  z"
      with G l_inv_ex obtain x_inv where xG: "x_inv  carrier(G)"
        and l_inv: "x_inv  x = 𝟭" by fast
      from G eq xG have "(x_inv  x)  y = (x_inv  x)  z"
        by (simp add: m_assoc)
      with G show "y = z" by (simp add: l_inv)
    next
      assume eq: "y = z"
      with G show "x  y = x  z" by simp
    }
  qed
  have r_one:
    "x. x  carrier(G)  x  𝟭 = x"
  proof -
    fix x
    assume x: "x  carrier(G)"
    with l_inv_ex obtain x_inv where xG: "x_inv  carrier(G)"
      and l_inv: "x_inv  x = 𝟭" by fast
    from x xG have "x_inv  (x  𝟭) = x_inv  x"
      by (simp add: m_assoc [symmetric] l_inv)
    with x xG show "x  𝟭 = x" by simp
  qed
  have inv_ex:
    "x. x  carrier(G)  y  carrier(G). y  x = 𝟭  x  y = 𝟭"
  proof -
    fix x
    assume x: "x  carrier(G)"
    with l_inv_ex obtain y where y: "y  carrier(G)"
      and l_inv: "y  x = 𝟭" by fast
    from x y have "y  (x  y) = y  𝟭"
      by (simp add: m_assoc [symmetric] l_inv r_one)
    with x y have r_inv: "x  y = 𝟭"
      by simp
    from x y show "y  carrier(G). y  x = 𝟭  x  y = 𝟭"
      by (fast intro: l_inv r_inv)
  qed
  show ?thesis
    by (blast intro: group.intro monoid.intro group_axioms.intro
                     assms r_one inv_ex)
qed

lemma (in group) inv [simp]:
  "x  carrier(G)  inv x  carrier(G)  inv x  x = 𝟭  x  inv x = 𝟭"
  apply (frule inv_ex)
    unfolding Bex_def m_inv_def
  apply (erule exE)
  apply (rule theI)
  apply (rule ex1I, assumption)
   apply (blast intro: inv_unique)
  done

lemma (in group) inv_closed [intro!]:
  "x  carrier(G)  inv x  carrier(G)"
  by simp

lemma (in group) l_inv:
  "x  carrier(G)  inv x  x = 𝟭"
  by simp

lemma (in group) r_inv:
  "x  carrier(G)  x  inv x = 𝟭"
  by simp


subsection ‹Cancellation Laws and Basic Properties›

lemma (in group) l_cancel [simp]:
  assumes "x  carrier(G)" "y  carrier(G)" "z  carrier(G)"
  shows "(x  y = x  z)  (y = z)"
proof
  assume eq: "x  y = x  z"
  hence  "(inv x  x)  y = (inv x  x)  z"
    by (simp only: m_assoc inv_closed assms)
  thus "y = z" by (simp add: assms)
next
  assume eq: "y = z"
  then show "x  y = x  z" by simp
qed

lemma (in group) r_cancel [simp]:
  assumes "x  carrier(G)" "y  carrier(G)" "z  carrier(G)"
  shows "(y  x = z  x)  (y = z)"
proof
  assume eq: "y  x = z  x"
  then have "y  (x  inv x) = z  (x  inv x)"
    by (simp only: m_assoc [symmetric] inv_closed assms)
  thus "y = z" by (simp add: assms)
next
  assume eq: "y = z"
  thus  "y  x = z  x" by simp
qed

lemma (in group) inv_comm:
  assumes "x  y = 𝟭"
      and G: "x  carrier(G)"  "y  carrier(G)"
  shows "y  x = 𝟭"
proof -
  from G have "x  y  x = x  𝟭" by (auto simp add: assms)
  with G show ?thesis by (simp del: r_one add: m_assoc)
qed

lemma (in group) inv_equality:
     "y  x = 𝟭; x  carrier(G); y  carrier(G)  inv x = y"
apply (simp add: m_inv_def)
apply (rule the_equality)
 apply (simp add: inv_comm [of y x])
apply (rule r_cancel [THEN iffD1], auto)
done

lemma (in group) inv_one [simp]:
  "inv 𝟭 = 𝟭"
  by (auto intro: inv_equality)

lemma (in group) inv_inv [simp]: "x  carrier(G)  inv (inv x) = x"
  by (auto intro: inv_equality)

text‹This proof is by cancellation›
lemma (in group) inv_mult_group:
  "x  carrier(G); y  carrier(G)  inv (x  y) = inv y  inv x"
proof -
  assume G: "x  carrier(G)"  "y  carrier(G)"
  then have "inv (x  y)  (x  y) = (inv y  inv x)  (x  y)"
    by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv)
  with G show ?thesis by (simp_all del: inv add: inv_closed)
qed


subsection ‹Substructures›

locale subgroup = fixes H and G (structure)
  assumes subset: "H  carrier(G)"
    and m_closed [intro, simp]: "x  H; y  H  x  y  H"
    and  one_closed [simp]: "𝟭  H"
    and m_inv_closed [intro,simp]: "x  H  inv x  H"


lemma (in subgroup) mem_carrier [simp]:
  "x  H  x  carrier(G)"
  using subset by blast


lemma subgroup_imp_subset:
  "subgroup(H,G)  H  carrier(G)"
  by (rule subgroup.subset)

lemma (in subgroup) group_axiomsI [intro]:
  assumes "group(G)"
  shows "group_axioms (update_carrier(G,H))"
proof -
  interpret group G by fact
  show ?thesis by (force intro: group_axioms.intro l_inv r_inv)
qed

lemma (in subgroup) is_group [intro]:
  assumes "group(G)"
  shows "group (update_carrier(G,H))"
proof -
  interpret group G by fact
  show ?thesis
  by (rule groupI) (auto intro: m_assoc l_inv mem_carrier)
qed

text ‹
  Since termH is nonempty, it contains some element termx.  Since
  it is closed under inverse, it contains inv x›.  Since
  it is closed under product, it contains x ⋅ inv x = 𝟭›.
›

text ‹
  Since termH is nonempty, it contains some element termx.  Since
  it is closed under inverse, it contains inv x›.  Since
  it is closed under product, it contains x ⋅ inv x = 𝟭›.
›

lemma (in group) one_in_subset:
  "H  carrier(G); H  0; a  H. inv a  H; aH. bH. a  b  H
    𝟭  H"
by (force simp add: l_inv)

text ‹A characterization of subgroups: closed, non-empty subset.›

declare monoid.one_closed [simp] group.inv_closed [simp]
  monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:
  "¬ subgroup(0,G)"
  by (blast dest: subgroup.one_closed)


subsection ‹Direct Products›

definition
  DirProdGroup :: "[i,i]  i"  (infixr  80) where
  "G  H  <carrier(G) × carrier(H),
              (λ<g,h, <g', h'>>
                    (carrier(G) × carrier(H)) × (carrier(G) × carrier(H)).
                <g Gg', h Hh'>),
              <𝟭G, 𝟭H>, 0>"

lemma DirProdGroup_group:
  assumes "group(G)" and "group(H)"
  shows "group (G  H)"
proof -
  interpret G: group G by fact
  interpret H: group H by fact
  show ?thesis by (force intro!: groupI G.m_assoc H.m_assoc G.l_inv H.l_inv
          simp add: DirProdGroup_def)
qed

lemma carrier_DirProdGroup [simp]:
     "carrier (G  H) = carrier(G) × carrier(H)"
  by (simp add: DirProdGroup_def)

lemma one_DirProdGroup [simp]:
     "𝟭G  H= <𝟭G, 𝟭H>"
  by (simp add: DirProdGroup_def)

lemma mult_DirProdGroup [simp]:
     "g  carrier(G); h  carrier(H); g'  carrier(G); h'  carrier(H)
       g, h G  H<g', h'> = <g Gg', h Hh'>"
  by (simp add: DirProdGroup_def)

lemma inv_DirProdGroup [simp]:
  assumes "group(G)" and "group(H)"
  assumes g: "g  carrier(G)"
      and h: "h  carrier(H)"
  shows "invG  Hg, h = <invGg, invHh>"
  apply (rule group.inv_equality [OF DirProdGroup_group])
  apply (simp_all add: assms group.l_inv)
  done

subsection ‹Isomorphisms›

definition
  hom :: "[i,i]  i" where
  "hom(G,H) 
    {h  carrier(G) -> carrier(H).
      (x  carrier(G). y  carrier(G). h ` (x Gy) = (h ` x) H(h ` y))}"

lemma hom_mult:
  "h  hom(G,H); x  carrier(G); y  carrier(G)
    h ` (x Gy) = h ` x Hh ` y"
  by (simp add: hom_def)

lemma hom_closed:
  "h  hom(G,H); x  carrier(G)  h ` x  carrier(H)"
  by (auto simp add: hom_def)

lemma (in group) hom_compose:
     "h  hom(G,H); i  hom(H,I)  i O h  hom(G,I)"
by (force simp add: hom_def comp_fun)

lemma hom_is_fun:
  "h  hom(G,H)  h  carrier(G) -> carrier(H)"
  by (simp add: hom_def)


subsection ‹Isomorphisms›

definition
  iso :: "[i,i]  i"  (infixr  60) where
  "G  H  hom(G,H)  bij(carrier(G), carrier(H))"

lemma (in group) iso_refl: "id(carrier(G))  G  G"
  by (simp add: iso_def hom_def id_type id_bij)


lemma (in group) iso_sym:
     "h  G  H  converse(h)  H  G"
apply (simp add: iso_def bij_converse_bij, clarify)
apply (subgoal_tac "converse(h)  carrier(H)  carrier(G)")
 prefer 2 apply (simp add: bij_converse_bij bij_is_fun)
apply (auto intro: left_inverse_eq [of _ "carrier(G)" "carrier(H)"]
            simp add: hom_def bij_is_inj right_inverse_bij)
done

lemma (in group) iso_trans:
     "h  G  H; i  H  I  i O h  G  I"
  by (auto simp add: iso_def hom_compose comp_bij)

lemma DirProdGroup_commute_iso:
  assumes "group(G)" and "group(H)"
  shows "(λx,y  carrier(G  H). y,x)  (G  H)  (H  G)"
proof -
  interpret group G by fact
  interpret group H by fact
  show ?thesis by (auto simp add: iso_def hom_def inj_def surj_def bij_def)
qed

lemma DirProdGroup_assoc_iso:
  assumes "group(G)" and "group(H)" and "group(I)"
  shows "(λ<x,y,z>  carrier((G  H)  I). <x,y,z>)
           ((G  H)  I)  (G  (H  I))"
proof -
  interpret group G by fact
  interpret group H by fact
  interpret group I by fact
  show ?thesis
    by (auto intro: lam_type simp add: iso_def hom_def inj_def surj_def bij_def)
qed

text‹Basis for homomorphism proofs: we assume two groups termG and
  termH, with a homomorphism termh between them›
locale group_hom = G: group G + H: group H
  for G (structure) and H (structure) and h +
  assumes homh: "h  hom(G,H)"
  notes hom_mult [simp] = hom_mult [OF homh]
    and hom_closed [simp] = hom_closed [OF homh]
    and hom_is_fun [simp] = hom_is_fun [OF homh]

lemma (in group_hom) one_closed [simp]:
  "h ` 𝟭  carrier(H)"
  by simp

lemma (in group_hom) hom_one [simp]:
  "h ` 𝟭 = 𝟭H⇙"
proof -
  have "h ` 𝟭 H𝟭H= (h ` 𝟭) H(h ` 𝟭)"
    by (simp add: hom_mult [symmetric] del: hom_mult)
  then show ?thesis by (simp del: H.r_one)
qed

lemma (in group_hom) inv_closed [simp]:
  "x  carrier(G)  h ` (inv x)  carrier(H)"
  by simp

lemma (in group_hom) hom_inv [simp]:
  "x  carrier(G)  h ` (inv x) = invH(h ` x)"
proof -
  assume x: "x  carrier(G)"
  then have "h ` x Hh ` (inv x) = 𝟭H⇙"
    by (simp add: hom_mult [symmetric] G.r_inv del: hom_mult)
  also from x have "... = h ` x HinvH(h ` x)"
    by (simp add: hom_mult [symmetric] H.r_inv del: hom_mult)
  finally have "h ` x Hh ` (inv x) = h ` x HinvH(h ` x)" .
  with x show ?thesis by (simp del: H.inv)
qed

subsection ‹Commutative Structures›

text ‹
  Naming convention: multiplicative structures that are commutative
  are called \emph{commutative}, additive structures are called
  \emph{Abelian}.
›

subsection ‹Definition›

locale comm_monoid = monoid +
  assumes m_comm: "x  carrier(G); y  carrier(G)  x  y = y  x"

lemma (in comm_monoid) m_lcomm:
  "x  carrier(G); y  carrier(G); z  carrier(G) 
   x  (y  z) = y  (x  z)"
proof -
  assume xyz: "x  carrier(G)"  "y  carrier(G)"  "z  carrier(G)"
  from xyz have "x  (y  z) = (x  y)  z" by (simp add: m_assoc)
  also from xyz have "... = (y  x)  z" by (simp add: m_comm)
  also from xyz have "... = y  (x  z)" by (simp add: m_assoc)
  finally show ?thesis .
qed

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm

locale comm_group = comm_monoid + group

lemma (in comm_group) inv_mult:
  "x  carrier(G); y  carrier(G)  inv (x  y) = inv x  inv y"
  by (simp add: m_ac inv_mult_group)


lemma (in group) subgroup_self: "subgroup (carrier(G),G)"
by (simp add: subgroup_def)

lemma (in group) subgroup_imp_group:
  "subgroup(H,G)  group (update_carrier(G,H))"
by (simp add: subgroup.is_group)

lemma (in group) subgroupI:
  assumes subset: "H  carrier(G)" and non_empty: "H  0"
    and "a. a  H  inv a  H"
    and "a b. a  H; b  H  a  b  H"
  shows "subgroup(H,G)"
proof (simp add: subgroup_def assms)
  show "𝟭  H"
    by (rule one_in_subset) (auto simp only: assms)
qed


subsection ‹Bijections of a Set, Permutation Groups, Automorphism Groups›

definition
  BijGroup :: "ii" where
  "BijGroup(S) 
    <bij(S,S),
     λg,f  bij(S,S) × bij(S,S). g O f,
     id(S), 0>"


subsection ‹Bijections Form a Group›

theorem group_BijGroup: "group(BijGroup(S))"
apply (simp add: BijGroup_def)
apply (rule groupI)
    apply (simp_all add: id_bij comp_bij comp_assoc)
 apply (simp add: id_bij bij_is_fun left_comp_id [of _ S S] fun_is_rel)
apply (blast intro: left_comp_inverse bij_is_inj bij_converse_bij)
done


subsection‹Automorphisms Form a Group›

lemma Bij_Inv_mem: "f  bij(S,S);  x  S  converse(f) ` x  S"
by (blast intro: apply_funtype bij_is_fun bij_converse_bij)

lemma inv_BijGroup: "f  bij(S,S)  m_inv (BijGroup(S), f) = converse(f)"
apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add: BijGroup_def bij_converse_bij
          left_comp_inverse [OF bij_is_inj])
done

lemma iso_is_bij: "h  G  H  h  bij(carrier(G), carrier(H))"
by (simp add: iso_def)


definition
  auto :: "ii" where
  "auto(G)  iso(G,G)"

definition
  AutoGroup :: "ii" where
  "AutoGroup(G)  update_carrier(BijGroup(carrier(G)), auto(G))"


lemma (in group) id_in_auto: "id(carrier(G))  auto(G)"
  by (simp add: iso_refl auto_def)

lemma (in group) subgroup_auto:
      "subgroup (auto(G)) (BijGroup (carrier(G)))"
proof (rule subgroup.intro)
  show "auto(G)  carrier (BijGroup (carrier(G)))"
    by (auto simp add: auto_def BijGroup_def iso_def)
next
  fix x y
  assume "x  auto(G)" "y  auto(G)"
  thus "x BijGroup (carrier(G))y  auto(G)"
    by (auto simp add: BijGroup_def auto_def iso_def bij_is_fun
                       group.hom_compose comp_bij)
next
  show "𝟭BijGroup (carrier(G)) auto(G)" by (simp add:  BijGroup_def id_in_auto)
next
  fix x
  assume "x  auto(G)"
  thus "invBijGroup (carrier(G))x  auto(G)"
    by (simp add: auto_def inv_BijGroup iso_is_bij iso_sym)
qed

theorem (in group) AutoGroup: "group (AutoGroup(G))"
by (simp add: AutoGroup_def subgroup.is_group subgroup_auto group_BijGroup)



subsection‹Cosets and Quotient Groups›

definition
  r_coset  :: "[i,i,i]  i"  (infixl #>ı› 60) where
  "H #>Ga  hH. {h Ga}"

definition
  l_coset  :: "[i,i,i]  i"  (infixl <#ı› 60) where
  "a <#GH  hH. {a Gh}"

definition
  RCOSETS  :: "[i,i]  i"  (rcosetsı _› [81] 80) where
  "rcosetsGH  acarrier(G). {H #>Ga}"

definition
  set_mult :: "[i,i,i]  i"  (infixl <#>ı› 60) where
  "H <#>GK  hH. kK. {h Gk}"

definition
  SET_INV  :: "[i,i]  i"  (set'_invı _› [81] 80) where
  "set_invGH  hH. {invGh}"


locale normal = subgroup + group +
  assumes coset_eq: "(x  carrier(G). H #> x = x <# H)"

notation
  normal  (infixl  60)


subsection ‹Basic Properties of Cosets›

lemma (in group) coset_mult_assoc:
     "M  carrier(G); g  carrier(G); h  carrier(G)
       (M #> g) #> h = M #> (g  h)"
by (force simp add: r_coset_def m_assoc)

lemma (in group) coset_mult_one [simp]: "M  carrier(G)  M #> 𝟭 = M"
by (force simp add: r_coset_def)

lemma (in group) solve_equation:
    "subgroup(H,G); x  H; y  H  hH. y = h  x"
apply (rule bexI [of _ "y  (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
                      subgroup.subset [THEN subsetD])
done

lemma (in group) repr_independence:
     "y  H #> x;  x  carrier(G); subgroup(H,G)  H #> x = H #> y"
by (auto simp add: r_coset_def m_assoc [symmetric]
                   subgroup.subset [THEN subsetD]
                   subgroup.m_closed solve_equation)

lemma (in group) coset_join2:
     "x  carrier(G);  subgroup(H,G);  xH  H #> x = H"
  ― ‹Alternative proof is to put termx=𝟭 in repr_independence›.›
by (force simp add: subgroup.m_closed r_coset_def solve_equation)

lemma (in group) r_coset_subset_G:
     "H  carrier(G); x  carrier(G)  H #> x  carrier(G)"
by (auto simp add: r_coset_def)

lemma (in group) rcosI:
     "h  H; H  carrier(G); x  carrier(G)  h  x  H #> x"
by (auto simp add: r_coset_def)

lemma (in group) rcosetsI:
     "H  carrier(G); x  carrier(G)  H #> x  rcosets H"
by (auto simp add: RCOSETS_def)


text‹Really needed?›
lemma (in group) transpose_inv:
     "x  y = z;  x  carrier(G);  y  carrier(G);  z  carrier(G)
       (inv x)  z = y"
by (force simp add: m_assoc [symmetric])



subsection ‹Normal subgroups›

lemma normal_imp_subgroup: "H  G  subgroup(H,G)"
  by (simp add: normal_def subgroup_def)

lemma (in group) normalI:
  "subgroup(H,G)  (x  carrier(G). H #> x = x <# H)  H  G"
  by (simp add: normal_def normal_axioms_def)

lemma (in normal) inv_op_closed1:
     "x  carrier(G); h  H  (inv x)  h  x  H"
apply (insert coset_eq)
apply (auto simp add: l_coset_def r_coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done

lemma (in normal) inv_op_closed2:
     "x  carrier(G); h  H  x  h  (inv x)  H"
apply (subgoal_tac "inv (inv x)  h  (inv x)  H")
apply simp
apply (blast intro: inv_op_closed1)
done

text‹Alternative characterization of normal subgroups›
lemma (in group) normal_inv_iff:
     "(N  G) 
      (subgroup(N,G)  (x  carrier(G). h  N. x  h  (inv x)  N))"
      (is "_  ?rhs")
proof
  assume N: "N  G"
  show ?rhs
    by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
  assume ?rhs
  hence sg: "subgroup(N,G)"
    and closed: "x. xcarrier(G)  hN. x  h  inv x  N" by auto
  hence sb: "N  carrier(G)" by (simp add: subgroup.subset)
  show "N  G"
  proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
    fix x
    assume x: "x  carrier(G)"
    show "(hN. {h  x}) = (hN. {x  h})"
    proof
      show "(hN. {h  x})  (hN. {x  h})"
      proof clarify
        fix n
        assume n: "n  N"
        show "n  x  (hN. {x  h})"
        proof (rule UN_I)
          from closed [of "inv x"]
          show "inv x  n  x  N" by (simp add: x n)
          show "n  x  {x  (inv x  n  x)}"
            by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
        qed
      qed
    next
      show "(hN. {x  h})  (hN. {h  x})"
      proof clarify
        fix n
        assume n: "n  N"
        show "x  n  (hN. {h  x})"
        proof (rule UN_I)
          show "x  n  inv x  N" by (simp add: x n closed)
          show "x  n  {x  n  inv x  x}"
            by (simp add: x n m_assoc sb [THEN subsetD])
        qed
      qed
    qed
  qed
qed


subsection‹More Properties of Cosets›

lemma (in group) l_coset_subset_G:
     "H  carrier(G); x  carrier(G)  x <# H  carrier(G)"
by (auto simp add: l_coset_def subsetD)

lemma (in group) l_coset_swap:
     "y  x <# H;  x  carrier(G);  subgroup(H,G)  x  y <# H"
proof (simp add: l_coset_def)
  assume "hH. y = x  h"
    and x: "x  carrier(G)"
    and sb: "subgroup(H,G)"
  then obtain h' where h': "h'  H  x  h' = y" by blast
  show "hH. x = y  h"
  proof
    show "x = y  inv h'" using h' x sb
      by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
    show "inv h'  H" using h' sb
      by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
  qed
qed

lemma (in group) l_coset_carrier:
     "y  x <# H;  x  carrier(G);  subgroup(H,G)  y  carrier(G)"
by (auto simp add: l_coset_def m_assoc
                   subgroup.subset [THEN subsetD] subgroup.m_closed)

lemma (in group) l_repr_imp_subset:
  assumes y: "y  x <# H" and x: "x  carrier(G)" and sb: "subgroup(H,G)"
  shows "y <# H  x <# H"
proof -
  from y
  obtain h' where "h'  H" "x  h' = y" by (auto simp add: l_coset_def)
  thus ?thesis using x sb
    by (auto simp add: l_coset_def m_assoc
                       subgroup.subset [THEN subsetD] subgroup.m_closed)
qed

lemma (in group) l_repr_independence:
  assumes y: "y  x <# H" and x: "x  carrier(G)" and sb: "subgroup(H,G)"
  shows "x <# H = y <# H"
proof
  show "x <# H  y <# H"
    by (rule l_repr_imp_subset,
        (blast intro: l_coset_swap l_coset_carrier y x sb)+)
  show "y <# H  x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed

lemma (in group) setmult_subset_G:
     "H  carrier(G); K  carrier(G)  H <#> K  carrier(G)"
by (auto simp add: set_mult_def subsetD)

lemma (in group) subgroup_mult_id: "subgroup(H,G)  H <#> H = H"
apply (rule equalityI)
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _ "𝟭"])
apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD])
done


subsubsection ‹Set of inverses of an r_coset›.›

lemma (in normal) rcos_inv:
  assumes x:     "x  carrier(G)"
  shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe intro!: equalityI)
  fix h
  assume h: "h  H"
  {
    show "inv x  inv h  (jH. {j  inv x})"
    proof (rule UN_I)
      show "inv x  inv h  x  H"
        by (simp add: inv_op_closed1 h x)
      show "inv x  inv h  {inv x  inv h  x  inv x}"
        by (simp add: h x m_assoc)
    qed
  next
    show "h  inv x  (jH. {inv x  inv j})"
    proof (rule UN_I)
      show "x  inv h  inv x  H"
        by (simp add: inv_op_closed2 h x)
      show "h  inv x  {inv x  inv (x  inv h  inv x)}"
        by (simp add: h x m_assoc [symmetric] inv_mult_group)
    qed
  }
qed



subsubsection ‹Theorems for <#>› with #>› or <#›.›

lemma (in group) setmult_rcos_assoc:
     "H  carrier(G); K  carrier(G); x  carrier(G)
       H <#> (K #> x) = (H <#> K) #> x"
by (force simp add: r_coset_def set_mult_def m_assoc)

lemma (in group) rcos_assoc_lcos:
     "H  carrier(G); K  carrier(G); x  carrier(G)
       (H #> x) <#> K = H <#> (x <# K)"
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)

lemma (in normal) rcos_mult_step1:
     "x  carrier(G); y  carrier(G)
       (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
by (simp add: setmult_rcos_assoc subset
              r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)

lemma (in normal) rcos_mult_step2:
     "x  carrier(G); y  carrier(G)
       (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
by (insert coset_eq, simp add: normal_def)

lemma (in normal) rcos_mult_step3:
     "x  carrier(G); y  carrier(G)
       (H <#> (H #> x)) #> y = H #> (x  y)"
  by (simp add: setmult_rcos_assoc coset_mult_assoc
              subgroup_mult_id subset normal_axioms normal.axioms)

lemma (in normal) rcos_sum:
     "x  carrier(G); y  carrier(G)
       (H #> x) <#> (H #> y) = H #> (x  y)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)

lemma (in normal) rcosets_mult_eq: "M  rcosets H  H <#> M = M"
  ― ‹generalizes subgroup_mult_id›
  by (auto simp add: RCOSETS_def subset
        setmult_rcos_assoc subgroup_mult_id normal_axioms normal.axioms)


subsubsection‹Two distinct right cosets are disjoint›

definition
  r_congruent :: "[i,i]  i" (rcongı _› [60] 60) where
  "rcongGH  {x,y  carrier(G) * carrier(G). invGx Gy  H}"


lemma (in subgroup) equiv_rcong:
   assumes "group(G)"
   shows "equiv (carrier(G), rcong H)"
proof -
  interpret group G by fact
  show ?thesis proof (simp add: equiv_def, intro conjI)
    show "rcong H  carrier(G) × carrier(G)"
      by (auto simp add: r_congruent_def)
  next
    show "refl (carrier(G), rcong H)"
      by (auto simp add: r_congruent_def refl_def)
  next
    show "sym (rcong H)"
    proof (simp add: r_congruent_def sym_def, clarify)
      fix x y
      assume [simp]: "x  carrier(G)" "y  carrier(G)"
        and "inv x  y  H"
      hence "inv (inv x  y)  H" by simp
      thus "inv y  x  H" by (simp add: inv_mult_group)
    qed
  next
    show "trans (rcong H)"
    proof (simp add: r_congruent_def trans_def, clarify)
      fix x y z
      assume [simp]: "x  carrier(G)" "y  carrier(G)" "z  carrier(G)"
        and "inv x  y  H" and "inv y  z  H"
      hence "(inv x  y)  (inv y  z)  H" by simp
      hence "inv x  (y  inv y)  z  H" by (simp add: m_assoc del: inv)
      thus "inv x  z  H" by simp
    qed
  qed
qed

text‹Equivalence classes of rcong› correspond to left cosets.
  Was there a mistake in the definitions? I'd have expected them to
  correspond to right cosets.›
lemma (in subgroup) l_coset_eq_rcong:
  assumes "group(G)"
  assumes a: "a  carrier(G)"
  shows "a <# H = (rcong H) `` {a}"
proof -
  interpret group G by fact
  show ?thesis
    by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a
      Collect_image_eq)
qed

lemma (in group) rcos_equation:
  assumes "subgroup(H, G)"
  shows
     "ha  a = h  b; a  carrier(G);  b  carrier(G);
        h  H;  ha  H;  hb  H
       hb  a  (hH. {h  b})" (is "PROP ?P")
proof -
  interpret subgroup H G by fact
  show "PROP ?P"
    apply (rule UN_I [of "hb  ((inv ha)  h)"], simp)
    apply (simp add: m_assoc transpose_inv)
    done
qed

lemma (in group) rcos_disjoint:
  assumes "subgroup(H, G)"
  shows "a  rcosets H; b  rcosets H; ab  a  b = 0" (is "PROP ?P")
proof -
  interpret subgroup H G by fact
  show "PROP ?P"
    apply (simp add: RCOSETS_def r_coset_def)
    apply (blast intro: rcos_equation assms sym)
    done
qed


subsection ‹Order of a Group and Lagrange's Theorem›

definition
  order :: "i  i" where
  "order(S)  |carrier(S)|"

lemma (in group) rcos_self:
  assumes "subgroup(H, G)"
  shows "x  carrier(G)  x  H #> x" (is "PROP ?P")
proof -
  interpret subgroup H G by fact
  show "PROP ?P"
    apply (simp add: r_coset_def)
    apply (rule_tac x="𝟭" in bexI) apply (auto)
    done
qed

lemma (in group) rcosets_part_G:
  assumes "subgroup(H, G)"
  shows "(rcosets H) = carrier(G)"
proof -
  interpret subgroup H G by fact
  show ?thesis
    apply (rule equalityI)
    apply (force simp add: RCOSETS_def r_coset_def)
    apply (auto simp add: RCOSETS_def intro: rcos_self assms)
    done
qed

lemma (in group) cosets_finite:
     "c  rcosets H;  H  carrier(G);  Finite (carrier(G))  Finite(c)"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN subset_Finite])
done

text‹More general than the HOL version, which also requires termG to
      be finite.›
lemma (in group) card_cosets_equal:
  assumes H:   "H  carrier(G)"
  shows "c  rcosets H  |c| = |H|"
proof (simp add: RCOSETS_def, clarify)
  fix a
  assume a: "a  carrier(G)"
  show "|H #> a| = |H|"
  proof (rule eqpollI [THEN cardinal_cong])
    show "H #> a  H"
    proof (simp add: lepoll_def, intro exI)
      show "(λy  H#>a. y  inv a)  inj(H #> a, H)"
        by (auto intro: lam_type
                 simp add: inj_def r_coset_def m_assoc subsetD [OF H] a)
    qed
    show "H  H #> a"
    proof (simp add: lepoll_def, intro exI)
      show "(λy H. y  a)  inj(H, H #> a)"
        by (auto intro: lam_type
                 simp add: inj_def r_coset_def  subsetD [OF H] a)
    qed
  qed
qed


lemma (in group) rcosets_subset_PowG:
     "subgroup(H,G)  rcosets H  Pow(carrier(G))"
apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done

theorem (in group) lagrange:
     "Finite(carrier(G)); subgroup(H,G)
       |rcosets H| #* |H| = order(G)"
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult_commute)
apply (rule card_partition)
   apply (simp add: rcosets_subset_PowG [THEN subset_Finite])
  apply (simp add: rcosets_part_G)
 apply (simp add: card_cosets_equal [OF subgroup.subset])
apply (simp add: rcos_disjoint)
done


subsection ‹Quotient Groups: Factorization of a Group›

definition
  FactGroup :: "[i,i]  i" (infixl Mod 65) where
    ― ‹Actually defined for groups rather than monoids›
  "G Mod H 
     <rcosetsGH, λK1,K2  (rcosetsGH) × (rcosetsGH). K1 <#>GK2, H, 0>"

lemma (in normal) setmult_closed:
     "K1  rcosets H; K2  rcosets H  K1 <#> K2  rcosets H"
by (auto simp add: rcos_sum RCOSETS_def)

lemma (in normal) setinv_closed:
     "K  rcosets H  set_inv K  rcosets H"
by (auto simp add: rcos_inv RCOSETS_def)

lemma (in normal) rcosets_assoc:
     "M1  rcosets H; M2  rcosets H; M3  rcosets H
       M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
by (auto simp add: RCOSETS_def rcos_sum m_assoc)

lemma (in subgroup) subgroup_in_rcosets:
  assumes "group(G)"
  shows "H  rcosets H"
proof -
  interpret group G by fact
  have "H #> 𝟭 = H"
    using _ subgroup_axioms by (rule coset_join2) simp_all
  then show ?thesis
    by (auto simp add: RCOSETS_def intro: sym)
qed

lemma (in normal) rcosets_inv_mult_group_eq:
     "M  rcosets H  set_inv M <#> M = H"
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal_axioms normal.axioms)

theorem (in normal) factorgroup_is_group:
  "group (G Mod H)"
apply (simp add: FactGroup_def)
apply (rule groupI)
    apply (simp add: setmult_closed)
   apply (simp add: normal_imp_subgroup subgroup_in_rcosets)
  apply (simp add: setmult_closed rcosets_assoc)
 apply (simp add: normal_imp_subgroup
                  subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done

lemma (in normal) inv_FactGroup:
     "X  carrier (G Mod H)  invG Mod HX = set_inv X"
apply (rule group.inv_equality [OF factorgroup_is_group])
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done

text‹The coset map is a homomorphism from termG to the quotient group
  termG Mod H
lemma (in normal) r_coset_hom_Mod:
  "(λa  carrier(G). H #> a)  hom(G, G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def hom_def rcos_sum intro: lam_type)


subsection‹The First Isomorphism Theorem›

text‹The quotient by the kernel of a homomorphism is isomorphic to the
  range of that homomorphism.›

definition
  kernel :: "[i,i,i]  i" where
    ― ‹the kernel of a homomorphism›
  "kernel(G,H,h)  {x  carrier(G). h ` x = 𝟭H}"

lemma (in group_hom) subgroup_kernel: "subgroup (kernel(G,H,h), G)"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro)
done

text‹The kernel of a homomorphism is a normal subgroup›
lemma (in group_hom) normal_kernel: "(kernel(G,H,h))  G"
apply (simp add: group.normal_inv_iff subgroup_kernel group.intro)
apply (simp add: kernel_def)
done

lemma (in group_hom) FactGroup_nonempty:
  assumes X: "X  carrier (G Mod kernel(G,H,h))"
  shows "X  0"
proof -
  from X
  obtain g where "g  carrier(G)"
             and "X = kernel(G,H,h) #> g"
    by (auto simp add: FactGroup_def RCOSETS_def)
  thus ?thesis
   by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed


lemma (in group_hom) FactGroup_contents_mem:
  assumes X: "X  carrier (G Mod (kernel(G,H,h)))"
  shows "contents (h``X)  carrier(H)"
proof -
  from X
  obtain g where g: "g  carrier(G)"
             and "X = kernel(G,H,h) #> g"
    by (auto simp add: FactGroup_def RCOSETS_def)
  hence "h `` X = {h ` g}"
    by (auto simp add: kernel_def r_coset_def image_UN
                       image_eq_UN [OF hom_is_fun] g)
  thus ?thesis by (auto simp add: g)
qed

lemma mult_FactGroup:
     "X  carrier(G Mod H); X'  carrier(G Mod H)
       X (G Mod H)X' = X <#>GX'"
by (simp add: FactGroup_def)

lemma (in normal) FactGroup_m_closed:
     "X  carrier(G Mod H); X'  carrier(G Mod H)
       X <#>GX'  carrier(G Mod H)"
by (simp add: FactGroup_def setmult_closed)

lemma (in group_hom) FactGroup_hom:
     "(λX  carrier(G Mod (kernel(G,H,h))). contents (h``X))
       hom (G Mod (kernel(G,H,h)), H)"
proof (simp add: hom_def FactGroup_contents_mem lam_type mult_FactGroup normal.FactGroup_m_closed [OF normal_kernel], intro ballI)
  fix X and X'
  assume X:  "X   carrier (G Mod kernel(G,H,h))"
     and X': "X'  carrier (G Mod kernel(G,H,h))"
  then
  obtain g and g'
           where "g  carrier(G)" and "g'  carrier(G)"
             and "X = kernel(G,H,h) #> g" and "X' = kernel(G,H,h) #> g'"
    by (auto simp add: FactGroup_def RCOSETS_def)
  hence all: "xX. h ` x = h ` g" "xX'. h ` x = h ` g'"
    and Xsub: "X  carrier(G)" and X'sub: "X'  carrier(G)"
    by (force simp add: kernel_def r_coset_def image_def)+
  hence "h `` (X <#> X') = {h ` g Hh ` g'}" using X X'
    by (auto dest!: FactGroup_nonempty
             simp add: set_mult_def image_eq_UN [OF hom_is_fun] image_UN
                       subsetD [OF Xsub] subsetD [OF X'sub])
  thus "contents (h `` (X <#> X')) = contents (h `` X) Hcontents (h `` X')"
    by (simp add: all image_eq_UN [OF hom_is_fun] FactGroup_nonempty
                  X X' Xsub X'sub)
qed


text‹Lemma for the following injectivity result›
lemma (in group_hom) FactGroup_subset:
     "g  carrier(G); g'  carrier(G); h ` g = h ` g'
        kernel(G,H,h) #> g  kernel(G,H,h) #> g'"
apply (clarsimp simp add: kernel_def r_coset_def image_def)
apply (rename_tac y)
apply (rule_tac x="y  g  inv g'" in bexI)
apply (simp_all add: G.m_assoc)
done

lemma (in group_hom) FactGroup_inj:
     "(λXcarrier (G Mod kernel(G,H,h)). contents (h `` X))
       inj(carrier (G Mod kernel(G,H,h)), carrier(H))"
proof (simp add: inj_def FactGroup_contents_mem lam_type, clarify)
  fix X and X'
  assume X:  "X   carrier (G Mod kernel(G,H,h))"
     and X': "X'  carrier (G Mod kernel(G,H,h))"
  then
  obtain g and g'
           where gX: "g  carrier(G)"  "g'  carrier(G)"
              "X = kernel(G,H,h) #> g" "X' = kernel(G,H,h) #> g'"
    by (auto simp add: FactGroup_def RCOSETS_def)
  hence all: "xX. h ` x = h ` g" "xX'. h ` x = h ` g'"
    and Xsub: "X  carrier(G)" and X'sub: "X'  carrier(G)"
    by (force simp add: kernel_def r_coset_def image_def)+
  assume "contents (h `` X) = contents (h `` X')"
  hence h: "h ` g = h ` g'"
    by (simp add: all image_eq_UN [OF hom_is_fun] FactGroup_nonempty
                  X X' Xsub X'sub)
  show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed


lemma (in group_hom) kernel_rcoset_subset:
  assumes g: "g  carrier(G)"
  shows "kernel(G,H,h) #> g  carrier (G)"
    by (auto simp add: g kernel_def r_coset_def)



text‹If the homomorphism termh is onto termH, then so is the
homomorphism from the quotient group›
lemma (in group_hom) FactGroup_surj:
  assumes h: "h  surj(carrier(G), carrier(H))"
  shows "(λXcarrier (G Mod kernel(G,H,h)). contents (h `` X))
          surj(carrier (G Mod kernel(G,H,h)), carrier(H))"
proof (simp add: surj_def FactGroup_contents_mem lam_type, clarify)
  fix y
  assume y: "y  carrier(H)"
  with h obtain g where g: "g  carrier(G)" "h ` g = y"
    by (auto simp add: surj_def)
  hence "(xkernel(G,H,h) #> g. {h ` x}) = {y}"
    by (auto simp add: y kernel_def r_coset_def)
  with g show "xcarrier(G Mod kernel(G, H, h)). contents(h `` x) = y"
        ― ‹The witness is termkernel(G,H,h) #> g
    by (force simp add: FactGroup_def RCOSETS_def
           image_eq_UN [OF hom_is_fun] kernel_rcoset_subset)
qed


text‹If termh is a homomorphism from termG onto termH, then the
 quotient group termG Mod (kernel(G,H,h)) is isomorphic to termH.›
theorem (in group_hom) FactGroup_iso:
  "h  surj(carrier(G), carrier(H))
    (λXcarrier (G Mod kernel(G,H,h)). contents (h``X))  (G Mod (kernel(G,H,h)))  H"
by (simp add: iso_def FactGroup_hom FactGroup_inj bij_def FactGroup_surj)

end