Theory Distributor

(*  Title:      ZF/UNITY/Distributor.thy
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
    Copyright   2002  University of Cambridge

A multiple-client allocator from a single-client allocator:
Distributor specification.
*)

theory Distributor imports AllocBase Follows  Guar GenPrefix begin

text‹Distributor specification (the number of outputs is Nclients)›

text‹spec (14)›

definition
  distr_follows :: "[i, i, i, i i] i"  where
    "distr_follows(A, In, iIn, Out) 
     (lift(In) IncreasingWrt prefix(A)/list(A)) 
     (lift(iIn) IncreasingWrt prefix(nat)/list(nat)) 
     Always({s  state. elt  set_of_list(s`iIn). elt < Nclients})
         guarantees
         (n  Nclients.
          lift(Out(n))
              Fols
          (λs. sublist(s`In, {k  nat. k<length(s`iIn)  nth(k, s`iIn) = n}))
          Wrt prefix(A)/list(A))"

definition
  distr_allowed_acts :: "[ii]i"  where
    "distr_allowed_acts(Out) 
     {D  program. AllowedActs(D) =
     cons(id(state), G  (nnat. preserves(lift(Out(n)))). Acts(G))}"

definition
  distr_spec :: "[i, i, i, i i]i"  where
    "distr_spec(A, In, iIn, Out) 
     distr_follows(A, In, iIn, Out)  distr_allowed_acts(Out)"

locale distr =
  fixes In  ― ‹items to distribute›
    and iIn ― ‹destinations of items to distribute›
    and Out ― ‹distributed items›
    and A   ― ‹the type of items being distributed›
    and D
 assumes
     var_assumes [simp]:  "In  var  iIn  var  (n. Out(n):var)"
 and all_distinct_vars:   "n. all_distinct([In, iIn, Out(n)])"
 and type_assumes [simp]: "type_of(In)=list(A)   type_of(iIn)=list(nat) 
                          (n. type_of(Out(n))=list(A))"
 and default_val_assumes [simp]:
                         "default_val(In)=Nil 
                          default_val(iIn)=Nil 
                          (n. default_val(Out(n))=Nil)"
 and distr_spec:  "D  distr_spec(A, In, iIn, Out)"


lemma (in distr) In_value_type [simp,TC]: "s  state  s`In  list(A)"
  unfolding state_def
apply (drule_tac a = In in apply_type, auto)
done

lemma (in distr) iIn_value_type [simp,TC]:
     "s  state  s`iIn  list(nat)"
  unfolding state_def
apply (drule_tac a = iIn in apply_type, auto)
done

lemma (in distr) Out_value_type [simp,TC]:
     "s  state  s`Out(n):list(A)"
  unfolding state_def
apply (drule_tac a = "Out (n)" in apply_type)
apply auto
done

lemma (in distr) D_in_program [simp,TC]: "D  program"
apply (cut_tac distr_spec)
apply (auto simp add: distr_spec_def distr_allowed_acts_def)
done

lemma (in distr) D_ok_iff:
     "G  program 
        D ok G  ((n  nat. G  preserves(lift(Out(n))))  D  Allowed(G))"
apply (cut_tac distr_spec)
apply (auto simp add: INT_iff distr_spec_def distr_allowed_acts_def
                      Allowed_def ok_iff_Allowed)
apply (drule safety_prop_Acts_iff [THEN [2] rev_iffD1])
apply (auto intro: safety_prop_Inter)
done

lemma (in distr) distr_Increasing_Out:
"D  ((lift(In) IncreasingWrt prefix(A)/list(A)) 
      (lift(iIn) IncreasingWrt prefix(nat)/list(nat)) 
      Always({s  state. elt  set_of_list(s`iIn). elt<Nclients}))
      guarantees
          (n  Nclients. lift(Out(n)) IncreasingWrt
                            prefix(A)/list(A))"
apply (cut_tac D_in_program distr_spec)
apply (simp (no_asm_use) add: distr_spec_def distr_follows_def)
apply (auto intro!: guaranteesI intro: Follows_imp_Increasing_left 
            dest!: guaranteesD)
done

lemma (in distr) distr_bag_Follows_lemma:
"n  nat. G  preserves(lift(Out(n)));
   D  G  Always({s  state.
          elt  set_of_list(s`iIn). elt < Nclients})
   D  G  Always
          ({s  state. msetsum(λn. bag_of (sublist(s`In,
                       {k  nat. k < length(s`iIn) 
                          nth(k, s`iIn)= n})),
                         Nclients, A) =
              bag_of(sublist(s`In, length(s`iIn)))})"
apply (cut_tac D_in_program)
apply (subgoal_tac "G  program")
 prefer 2 apply (blast dest: preserves_type [THEN subsetD])
apply (erule Always_Diff_Un_eq [THEN iffD1])
apply (rule state_AlwaysI [THEN Always_weaken], auto)
apply (rename_tac s)
apply (subst bag_of_sublist_UN_disjoint [symmetric])
   apply (simp (no_asm_simp) add: nat_into_Finite)
  apply blast
 apply (simp (no_asm_simp))
apply (simp add: set_of_list_conv_nth [of _ nat])
apply (subgoal_tac
       "(i  Nclients. {knat. k < length(s`iIn)  nth(k, s`iIn) = i}) =
        length(s`iIn) ")
apply (simp (no_asm_simp))
apply (rule equalityI)
apply (force simp add: ltD, safe)
apply (rename_tac m)
apply (subgoal_tac "length (s ` iIn)  nat")
apply typecheck
apply (subgoal_tac "m  nat")
apply (drule_tac x = "nth(m, s`iIn) " and P = "λelt. X (elt)  elt<Nclients" for X in bspec)
apply (simp add: ltI)
apply (simp_all add: Ord_mem_iff_lt)
apply (blast dest: ltD)
apply (blast intro: lt_trans)
done

theorem (in distr) distr_bag_Follows:
 "D  ((lift(In) IncreasingWrt prefix(A)/list(A)) 
       (lift(iIn) IncreasingWrt prefix(nat)/list(nat)) 
        Always({s  state. elt  set_of_list(s`iIn). elt < Nclients}))
      guarantees
       (n  Nclients.
        (λs. msetsum(λi. bag_of(s`Out(i)),  Nclients, A))
        Fols
        (λs. bag_of(sublist(s`In, length(s`iIn))))
        Wrt MultLe(A, r)/Mult(A))"
apply (cut_tac distr_spec)
apply (rule guaranteesI, clarify)
apply (rule distr_bag_Follows_lemma [THEN Always_Follows2])
apply (simp add: D_ok_iff, auto)
apply (rule Follows_state_ofD1)
apply (rule Follows_msetsum_UN)
   apply (simp_all add: nat_into_Finite bag_of_multiset [of _ A])
apply (auto simp add: distr_spec_def distr_follows_def)
apply (drule guaranteesD, assumption)
apply (simp_all cong add: Follows_cong
                add: refl_prefix
                   mono_bag_of [THEN subset_Follows_comp, THEN subsetD, 
                                unfolded metacomp_def])
done

end