Theory ClientImpl

(*  Title:      ZF/UNITY/ClientImpl.thy
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
    Copyright   2002  University of Cambridge

Distributed Resource Management System:  Client Implementation.
*)

theory ClientImpl imports AllocBase Guar begin

abbreviation "ask  Var(Nil)" (* input history:  tokens requested *)
abbreviation "giv  Var([0])" (* output history: tokens granted *)
abbreviation "rel  Var([1])" (* input history: tokens released *)
abbreviation "tok  Var([2])" (* the number of available tokens *)

axiomatization where
  type_assumes:
  "type_of(ask) = list(tokbag)  type_of(giv) = list(tokbag) 
   type_of(rel) = list(tokbag)  type_of(tok) = nat" and
  default_val_assumes:
  "default_val(ask) = Nil  default_val(giv) = Nil 
   default_val(rel) = Nil  default_val(tok) = 0"


(*Array indexing is translated to list indexing as A[n] ≡ nth(n-1,A). *)

definition
 (** Release some client_tokens **)
    "client_rel_act 
     {s,t  state*state.
      nrel  nat. nrel = length(s`rel) 
                   t = s(rel:=(s`rel)@[nth(nrel, s`giv)]) 
                   nrel < length(s`giv) 
                   nth(nrel, s`ask)  nth(nrel, s`giv)}"

  (** Choose a new token requirement **)
  (** Including t=s suppresses fairness, allowing the non-trivial part
      of the action to be ignored **)
definition
  "client_tok_act  {s,t  state*state. t=s |
                     t = s(tok:=succ(s`tok mod NbT))}"

definition
  "client_ask_act  {s,t  state*state. t=s | (t=s(ask:=s`ask@[s`tok]))}"

definition
  "client_prog 
   mk_program({s  state. s`tok  NbT  s`giv = Nil 
                       s`ask = Nil  s`rel = Nil},
                    {client_rel_act, client_tok_act, client_ask_act},
                   G  preserves(lift(rel)) Int
                         preserves(lift(ask)) Int
                         preserves(lift(tok)).  Acts(G))"


declare type_assumes [simp] default_val_assumes [simp]
(* This part should be automated *)

lemma ask_value_type [simp,TC]: "s  state  s`ask  list(nat)"
  unfolding state_def
apply (drule_tac a = ask in apply_type, auto)
done

lemma giv_value_type [simp,TC]: "s  state  s`giv  list(nat)"
  unfolding state_def
apply (drule_tac a = giv in apply_type, auto)
done

lemma rel_value_type [simp,TC]: "s  state  s`rel  list(nat)"
  unfolding state_def
apply (drule_tac a = rel in apply_type, auto)
done

lemma tok_value_type [simp,TC]: "s  state  s`tok  nat"
  unfolding state_def
apply (drule_tac a = tok in apply_type, auto)
done

(** The Client Program **)

lemma client_type [simp,TC]: "client_prog  program"
  unfolding client_prog_def
apply (simp (no_asm))
done

declare client_prog_def [THEN def_prg_Init, simp]
declare client_prog_def [THEN def_prg_AllowedActs, simp]
declare client_prog_def [program]

declare  client_rel_act_def [THEN def_act_simp, simp]
declare  client_tok_act_def [THEN def_act_simp, simp]
declare  client_ask_act_def [THEN def_act_simp, simp]

lemma client_prog_ok_iff:
  "G  program. (client_prog ok G) 
   (G  preserves(lift(rel))  G  preserves(lift(ask)) 
    G  preserves(lift(tok))   client_prog  Allowed(G))"
by (auto simp add: ok_iff_Allowed client_prog_def [THEN def_prg_Allowed])

lemma client_prog_preserves:
    "client_prog:(x  var-{ask, rel, tok}. preserves(lift(x)))"
apply (rule Inter_var_DiffI, force)
apply (rule ballI)
apply (rule preservesI, safety, auto)
done


lemma preserves_lift_imp_stable:
     "G  preserves(lift(ff))  G  stable({s  state. P(s`ff)})"
apply (drule preserves_imp_stable)
apply (simp add: lift_def)
done

lemma preserves_imp_prefix:
     "G  preserves(lift(ff))
       G  stable({s  state. k, s`ff  prefix(nat)})"
by (erule preserves_lift_imp_stable)

(*Safety property 1 ∈ ask, rel are increasing: (24) *)
lemma client_prog_Increasing_ask_rel:
"client_prog: program guarantees Incr(lift(ask))  Incr(lift(rel))"
  unfolding guar_def
apply (auto intro!: increasing_imp_Increasing
            simp add: client_prog_ok_iff Increasing.increasing_def preserves_imp_prefix)
apply (safety, force, force)+
done

declare nth_append [simp] append_one_prefix [simp]

lemma NbT_pos2: "0<NbT"
apply (cut_tac NbT_pos)
apply (rule Ord_0_lt, auto)
done

(*Safety property 2 ∈ the client never requests too many tokens.
With no Substitution Axiom, we must prove the two invariants simultaneously. *)

lemma ask_Bounded_lemma:
"client_prog ok G; G  program
       client_prog  G 
              Always({s  state. s`tok  NbT}  
                      {s  state. elt  set_of_list(s`ask). elt  NbT})"
apply (rotate_tac -1)
apply (auto simp add: client_prog_ok_iff)
apply (rule invariantI [THEN stable_Join_Always2], force)
 prefer 2
 apply (fast intro: stable_Int preserves_lift_imp_stable, safety)
apply (auto dest: ActsD)
apply (cut_tac NbT_pos)
apply (rule NbT_pos2 [THEN mod_less_divisor])
apply (auto dest: ActsD preserves_imp_eq simp add: set_of_list_append)
done

(* Export version, with no mention of tok in the postcondition, but
  unfortunately tok must be declared local.*)
lemma client_prog_ask_Bounded:
    "client_prog  program guarantees
                   Always({s  state. elt  set_of_list(s`ask). elt  NbT})"
apply (rule guaranteesI)
apply (erule ask_Bounded_lemma [THEN Always_weaken], auto)
done

(*** Towards proving the liveness property ***)

lemma client_prog_stable_rel_le_giv:
    "client_prog  stable({s  state. <s`rel, s`giv>  prefix(nat)})"
by (safety, auto)

lemma client_prog_Join_Stable_rel_le_giv:
"client_prog  G  Incr(lift(giv)); G  preserves(lift(rel))
     client_prog  G  Stable({s  state. <s`rel, s`giv>  prefix(nat)})"
apply (rule client_prog_stable_rel_le_giv [THEN Increasing_preserves_Stable])
apply (auto simp add: lift_def)
done

lemma client_prog_Join_Always_rel_le_giv:
     "client_prog  G  Incr(lift(giv)); G  preserves(lift(rel))
     client_prog  G   Always({s  state. <s`rel, s`giv>  prefix(nat)})"
by (force intro!: AlwaysI client_prog_Join_Stable_rel_le_giv)

lemma def_act_eq:
     "A  {s, t  state*state. P(s, t)}  A={s, t  state*state. P(s, t)}"
by auto

lemma act_subset: "A={s,t  state*state. P(s, t)}  A<=state*state"
by auto

lemma transient_lemma:
"client_prog 
  transient({s  state. s`rel = k  k, h  strict_prefix(nat)
    <h, s`giv>  prefix(nat)  h pfixGe s`ask})"
apply (rule_tac act = client_rel_act in transientI)
apply (simp (no_asm) add: client_prog_def [THEN def_prg_Acts])
apply (simp (no_asm) add: client_rel_act_def [THEN def_act_eq, THEN act_subset])
apply (auto simp add: client_prog_def [THEN def_prg_Acts] domain_def)
apply (rule ReplaceI)
apply (rule_tac x = "x (rel:= x`rel @ [nth (length (x`rel), x`giv) ]) " in exI)
apply (auto intro!: state_update_type app_type length_type nth_type, auto)
apply (blast intro: lt_trans2 prefix_length_le strict_prefix_length_lt)
apply (blast intro: lt_trans2 prefix_length_le strict_prefix_length_lt)
apply (simp (no_asm_use) add: gen_prefix_iff_nth)
apply (subgoal_tac "h  list(nat)")
 apply (simp_all (no_asm_simp) add: prefix_type [THEN subsetD, THEN SigmaD1])
apply (auto simp add: prefix_def Ge_def)
apply (drule strict_prefix_length_lt)
apply (drule_tac x = "length (x`rel) " in spec)
apply auto
apply (simp (no_asm_use) add: gen_prefix_iff_nth)
apply (auto simp add: id_def lam_def)
done

lemma strict_prefix_is_prefix:
    "xs, ys  strict_prefix(A)   xs, ys  prefix(A)  xsys"
  unfolding strict_prefix_def id_def lam_def
apply (auto dest: prefix_type [THEN subsetD])
done

lemma induct_lemma:
"client_prog  G  Incr(lift(giv)); client_prog ok G; G  program
   client_prog  G 
  {s  state. s`rel = k  k,h  strict_prefix(nat)
    <h, s`giv>  prefix(nat)  h pfixGe s`ask}
        ⟼w {s  state. <k, s`rel>  strict_prefix(nat)
                           <s`rel, s`giv>  prefix(nat) 
                                  <h, s`giv>  prefix(nat) 
                h pfixGe s`ask}"
apply (rule single_LeadsTo_I)
 prefer 2 apply simp
apply (frule client_prog_Increasing_ask_rel [THEN guaranteesD])
apply (rotate_tac [3] 2)
apply (auto simp add: client_prog_ok_iff)
apply (rule transient_lemma [THEN Join_transient_I1, THEN transient_imp_leadsTo, THEN leadsTo_imp_LeadsTo, THEN PSP_Stable, THEN LeadsTo_weaken])
apply (rule Stable_Int [THEN Stable_Int, THEN Stable_Int])
apply (erule_tac f = "lift (giv) " and a = "s`giv" in Increasing_imp_Stable)
apply (simp (no_asm_simp))
apply (erule_tac f = "lift (ask) " and a = "s`ask" in Increasing_imp_Stable)
apply (simp (no_asm_simp))
apply (erule_tac f = "lift (rel) " and a = "s`rel" in Increasing_imp_Stable)
apply (simp (no_asm_simp))
apply (erule client_prog_Join_Stable_rel_le_giv, blast, simp_all)
 prefer 2
 apply (blast intro: sym strict_prefix_is_prefix [THEN iffD2] prefix_trans prefix_imp_pfixGe pfixGe_trans)
apply (auto intro: strict_prefix_is_prefix [THEN iffD1, THEN conjunct1]
                   prefix_trans)
done

lemma rel_progress_lemma:
"client_prog  G   Incr(lift(giv)); client_prog ok G; G  program
   client_prog  G  
     {s  state. <s`rel, h>  strict_prefix(nat)
            <h, s`giv>  prefix(nat)  h pfixGe s`ask}
                      ⟼w {s  state. <h, s`rel>  prefix(nat)}"
apply (rule_tac f = "λx  state. length(h) #- length(x`rel)"
       in LessThan_induct)
apply (auto simp add: vimage_def)
 prefer 2 apply (force simp add: lam_def)
apply (rule single_LeadsTo_I)
 prefer 2 apply simp
apply (subgoal_tac "h  list(nat)")
 prefer 2 apply (blast dest: prefix_type [THEN subsetD])
apply (rule induct_lemma [THEN LeadsTo_weaken])
    apply (simp add: length_type lam_def)
apply (auto intro: strict_prefix_is_prefix [THEN iffD2]
            dest: common_prefix_linear  prefix_type [THEN subsetD])
apply (erule swap)
apply (rule imageI)
 apply (force dest!: simp add: lam_def)
apply (simp add: length_type lam_def, clarify)
apply (drule strict_prefix_length_lt)+
apply (drule less_imp_succ_add, simp)+
apply clarify
apply simp
apply (erule diff_le_self [THEN ltD])
done

lemma progress_lemma:
"client_prog  G  Incr(lift(giv)); client_prog ok G; G  program
  client_prog  G
        {s  state. <h, s`giv>  prefix(nat)  h pfixGe s`ask}
         ⟼w  {s  state. <h, s`rel>  prefix(nat)}"
apply (rule client_prog_Join_Always_rel_le_giv [THEN Always_LeadsToI],
       assumption)
apply (force simp add: client_prog_ok_iff)
apply (rule LeadsTo_weaken_L)
apply (rule LeadsTo_Un [OF rel_progress_lemma
                           subset_refl [THEN subset_imp_LeadsTo]])
apply (auto intro: strict_prefix_is_prefix [THEN iffD2]
            dest: common_prefix_linear prefix_type [THEN subsetD])
done

(*Progress property: all tokens that are given will be released*)
lemma client_prog_progress:
"client_prog  Incr(lift(giv))  guarantees
      (h  list(nat). {s  state. <h, s`giv>  prefix(nat) 
              h pfixGe s`ask} ⟼w {s  state. <h, s`rel>  prefix(nat)})"
apply (rule guaranteesI)
apply (blast intro: progress_lemma, auto)
done

lemma client_prog_Allowed:
     "Allowed(client_prog) =
      preserves(lift(rel))  preserves(lift(ask))  preserves(lift(tok))"
apply (cut_tac v = "lift (ask)" in preserves_type)
apply (auto simp add: Allowed_def client_prog_def [THEN def_prg_Allowed]
                      cons_Int_distrib safety_prop_Acts_iff)
done

end