Theory Term

(*  Title:      ZF/Induct/Term.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge
*)

section ‹Terms over an alphabet›

theory Term imports ZF begin

text ‹
  Illustrates the list functor (essentially the same type as in Trees_Forest›).
›

consts
  "term" :: "i  i"

datatype "term(A)" = Apply ("a  A", "l  list(term(A))")
  monos list_mono
  type_elims list_univ [THEN subsetD, elim_format]

declare Apply [TC]

definition
  term_rec :: "[i, [i, i, i]  i]  i"  where
  "term_rec(t,d) 
    Vrec(t, λt g. term_case(λx zs. d(x, zs, map(λz. g`z, zs)), t))"

definition
  term_map :: "[i  i, i]  i"  where
  "term_map(f,t)  term_rec(t, λx zs rs. Apply(f(x), rs))"

definition
  term_size :: "i  i"  where
  "term_size(t)  term_rec(t, λx zs rs. succ(list_add(rs)))"

definition
  reflect :: "i  i"  where
  "reflect(t)  term_rec(t, λx zs rs. Apply(x, rev(rs)))"

definition
  preorder :: "i  i"  where
  "preorder(t)  term_rec(t, λx zs rs. Cons(x, flat(rs)))"

definition
  postorder :: "i  i"  where
  "postorder(t)  term_rec(t, λx zs rs. flat(rs) @ [x])"

lemma term_unfold: "term(A) = A * list(term(A))"
  by (fast intro!: term.intros [unfolded term.con_defs]
    elim: term.cases [unfolded term.con_defs])

lemma term_induct2:
  "t  term(A);
      x.      x  A  P(Apply(x,Nil));
      x z zs. x  A;  z  term(A);  zs: list(term(A));  P(Apply(x,zs))
  P(Apply(x, Cons(z,zs)))
  P(t)"
  ― ‹Induction on termterm(A) followed by induction on termlist.›
  apply (induct_tac t)
  apply (erule list.induct)
   apply (auto dest: list_CollectD)
  done

lemma term_induct_eqn [consumes 1, case_names Apply]:
  "t  term(A);
      x zs. x  A;  zs: list(term(A));  map(f,zs) = map(g,zs) 
              f(Apply(x,zs)) = g(Apply(x,zs))
  f(t) = g(t)"
  ― ‹Induction on termterm(A) to prove an equation.›
  apply (induct_tac t)
  apply (auto dest: map_list_Collect list_CollectD)
  done

text ‹
  \medskip Lemmas to justify using termterm in other recursive
  type definitions.
›

lemma term_mono: "A  B  term(A)  term(B)"
    unfolding term.defs
  apply (rule lfp_mono)
    apply (rule term.bnd_mono)+
  apply (rule univ_mono basic_monos| assumption)+
  done

lemma term_univ: "term(univ(A))  univ(A)"
  ― ‹Easily provable by induction also›
    unfolding term.defs term.con_defs
  apply (rule lfp_lowerbound)
   apply (rule_tac [2] A_subset_univ [THEN univ_mono])
  apply safe
  apply (assumption | rule Pair_in_univ list_univ [THEN subsetD])+
  done

lemma term_subset_univ: "A  univ(B)  term(A)  univ(B)"
  apply (rule subset_trans)
   apply (erule term_mono)
  apply (rule term_univ)
  done

lemma term_into_univ: "t  term(A);  A  univ(B)  t  univ(B)"
  by (rule term_subset_univ [THEN subsetD])

text ‹
  \medskip term_rec› -- by Vset› recursion.
›

lemma map_lemma: "l  list(A);  Ord(i);  rank(l)<i
     map(λz. (λx  Vset(i).h(x)) ` z, l) = map(h,l)"
  ― ‹termmap works correctly on the underlying list of terms.›
  apply (induct set: list)
   apply simp
  apply (subgoal_tac "rank (a) <i  rank (l) < i")
   apply (simp add: rank_of_Ord)
  apply (simp add: list.con_defs)
  apply (blast dest: rank_rls [THEN lt_trans])
  done

lemma term_rec [simp]: "ts  list(A) 
  term_rec(Apply(a,ts), d) = d(a, ts, map (λz. term_rec(z,d), ts))"
  ― ‹Typing premise is necessary to invoke map_lemma›.›
  apply (rule term_rec_def [THEN def_Vrec, THEN trans])
    unfolding term.con_defs
  apply (simp add: rank_pair2 map_lemma)
  done

lemma term_rec_type:
  assumes t: "t  term(A)"
    and a: "x zs r. x  A;  zs: list(term(A));
                   r  list(t  term(A). C(t))
                 d(x, zs, r): C(Apply(x,zs))"
  shows "term_rec(t,d)  C(t)"
  ― ‹Slightly odd typing condition on r› in the second premise!›
  using t
  apply induct
  apply (frule list_CollectD)
  apply (subst term_rec)
   apply (assumption | rule a)+
  apply (erule list.induct)
   apply auto
  done

lemma def_term_rec:
  "t. j(t)term_rec(t,d);  ts: list(A) 
    j(Apply(a,ts)) = d(a, ts, map(λZ. j(Z), ts))"
  apply (simp only:)
  apply (erule term_rec)
  done

lemma term_rec_simple_type [TC]:
  "t  term(A);
      x zs r. x  A;  zs: list(term(A));  r  list(C)
                 d(x, zs, r): C
  term_rec(t,d)  C"
  apply (erule term_rec_type)
  apply (drule subset_refl [THEN UN_least, THEN list_mono, THEN subsetD])
  apply simp
  done


text ‹
  \medskip termterm_map.
›

lemma term_map [simp]:
  "ts  list(A) 
    term_map(f, Apply(a, ts)) = Apply(f(a), map(term_map(f), ts))"
  by (rule term_map_def [THEN def_term_rec])

lemma term_map_type [TC]:
    "t  term(A);  x. x  A  f(x): B  term_map(f,t)  term(B)"
    unfolding term_map_def
  apply (erule term_rec_simple_type)
  apply fast
  done

lemma term_map_type2 [TC]:
    "t  term(A)  term_map(f,t)  term({f(u). u  A})"
  apply (erule term_map_type)
  apply (erule RepFunI)
  done

text ‹
  \medskip termterm_size.
›

lemma term_size [simp]:
    "ts  list(A)  term_size(Apply(a, ts)) = succ(list_add(map(term_size, ts)))"
  by (rule term_size_def [THEN def_term_rec])

lemma term_size_type [TC]: "t  term(A)  term_size(t)  nat"
  by (auto simp add: term_size_def)


text ‹
  \medskip reflect›.
›

lemma reflect [simp]:
    "ts  list(A)  reflect(Apply(a, ts)) = Apply(a, rev(map(reflect, ts)))"
  by (rule reflect_def [THEN def_term_rec])

lemma reflect_type [TC]: "t  term(A)  reflect(t)  term(A)"
  by (auto simp add: reflect_def)


text ‹
  \medskip preorder›.
›

lemma preorder [simp]:
    "ts  list(A)  preorder(Apply(a, ts)) = Cons(a, flat(map(preorder, ts)))"
  by (rule preorder_def [THEN def_term_rec])

lemma preorder_type [TC]: "t  term(A)  preorder(t)  list(A)"
  by (simp add: preorder_def)


text ‹
  \medskip postorder›.
›

lemma postorder [simp]:
    "ts  list(A)  postorder(Apply(a, ts)) = flat(map(postorder, ts)) @ [a]"
  by (rule postorder_def [THEN def_term_rec])

lemma postorder_type [TC]: "t  term(A)  postorder(t)  list(A)"
  by (simp add: postorder_def)


text ‹
  \medskip Theorems about term_map›.
›

declare map_compose [simp]

lemma term_map_ident: "t  term(A)  term_map(λu. u, t) = t"
  by (induct rule: term_induct_eqn) simp

lemma term_map_compose:
    "t  term(A)  term_map(f, term_map(g,t)) = term_map(λu. f(g(u)), t)"
  by (induct rule: term_induct_eqn) simp

lemma term_map_reflect:
    "t  term(A)  term_map(f, reflect(t)) = reflect(term_map(f,t))"
  by (induct rule: term_induct_eqn) (simp add: rev_map_distrib [symmetric])


text ‹
  \medskip Theorems about term_size›.
›

lemma term_size_term_map: "t  term(A)  term_size(term_map(f,t)) = term_size(t)"
  by (induct rule: term_induct_eqn) simp

lemma term_size_reflect: "t  term(A)  term_size(reflect(t)) = term_size(t)"
  by (induct rule: term_induct_eqn) (simp add: rev_map_distrib [symmetric] list_add_rev)

lemma term_size_length: "t  term(A)  term_size(t) = length(preorder(t))"
  by (induct rule: term_induct_eqn) (simp add: length_flat)


text ‹
  \medskip Theorems about reflect›.
›

lemma reflect_reflect_ident: "t  term(A)  reflect(reflect(t)) = t"
  by (induct rule: term_induct_eqn) (simp add: rev_map_distrib)


text ‹
  \medskip Theorems about preorder.
›

lemma preorder_term_map:
    "t  term(A)  preorder(term_map(f,t)) = map(f, preorder(t))"
  by (induct rule: term_induct_eqn) (simp add: map_flat)

lemma preorder_reflect_eq_rev_postorder:
    "t  term(A)  preorder(reflect(t)) = rev(postorder(t))"
  by (induct rule: term_induct_eqn)
    (simp add: rev_app_distrib rev_flat rev_map_distrib [symmetric])

end