Theory PropLog

(*  Title:      ZF/Induct/PropLog.thy
    Author:     Tobias Nipkow & Lawrence C Paulson
    Copyright   1993  University of Cambridge
*)

section ‹Meta-theory of propositional logic›

theory PropLog imports ZF begin

text ‹
  Datatype definition of propositional logic formulae and inductive
  definition of the propositional tautologies.

  Inductive definition of propositional logic.  Soundness and
  completeness w.r.t.\ truth-tables.

  Prove: If H |= p› then G |= p› where G ∈
  Fin(H)›


subsection ‹The datatype of propositions›

consts
  propn :: i

datatype propn =
    Fls
  | Var ("n  nat")    (#_› [100] 100)
  | Imp ("p  propn", "q  propn")    (infixr  90)


subsection ‹The proof system›

consts thms     :: "i  i"

abbreviation
  thms_syntax :: "[i,i]  o"    (infixl |- 50)
  where "H |- p  p  thms(H)"

inductive
  domains "thms(H)"  "propn"
  intros
    H:  "p  H;  p  propn  H |- p"
    K:  "p  propn;  q  propn  H |- pqp"
    S:  "p  propn;  q  propn;  r  propn
          H |- (pqr)  (pq)  pr"
    DN: "p  propn  H |- ((pFls)  Fls)  p"
    MP: "H |- pq;  H |- p;  p  propn;  q  propn  H |- q"
  type_intros "propn.intros"

declare propn.intros [simp]


subsection ‹The semantics›

subsubsection ‹Semantics of propositional logic.›

consts
  is_true_fun :: "[i,i]  i"
primrec
  "is_true_fun(Fls, t) = 0"
  "is_true_fun(Var(v), t) = (if v  t then 1 else 0)"
  "is_true_fun(pq, t) = (if is_true_fun(p,t) = 1 then is_true_fun(q,t) else 1)"

definition
  is_true :: "[i,i]  o"  where
  "is_true(p,t)  is_true_fun(p,t) = 1"
  ― ‹this definition is required since predicates can't be recursive›

lemma is_true_Fls [simp]: "is_true(Fls,t)  False"
  by (simp add: is_true_def)

lemma is_true_Var [simp]: "is_true(#v,t)  v  t"
  by (simp add: is_true_def)

lemma is_true_Imp [simp]: "is_true(pq,t)  (is_true(p,t)is_true(q,t))"
  by (simp add: is_true_def)


subsubsection ‹Logical consequence›

text ‹
  For every valuation, if all elements of H› are true then so
  is p›.
›

definition
  logcon :: "[i,i]  o"    (infixl |= 50)  where
  "H |= p  t. (q  H. is_true(q,t))  is_true(p,t)"


text ‹
  A finite set of hypotheses from t› and the Var›s in
  p›.
›

consts
  hyps :: "[i,i]  i"
primrec
  "hyps(Fls, t) = 0"
  "hyps(Var(v), t) = (if v  t then {#v} else {#vFls})"
  "hyps(pq, t) = hyps(p,t)  hyps(q,t)"



subsection ‹Proof theory of propositional logic›

lemma thms_mono: "G  H  thms(G)  thms(H)"
    unfolding thms.defs
  apply (rule lfp_mono)
    apply (rule thms.bnd_mono)+
  apply (assumption | rule univ_mono basic_monos)+
  done

lemmas thms_in_pl = thms.dom_subset [THEN subsetD]

inductive_cases ImpE: "pq  propn"

lemma thms_MP: "H |- pq;  H |- p  H |- q"
  ― ‹Stronger Modus Ponens rule: no typechecking!›
  apply (rule thms.MP)
     apply (erule asm_rl thms_in_pl thms_in_pl [THEN ImpE])+
  done

lemma thms_I: "p  propn  H |- pp"
  ― ‹Rule is called I› for Identity Combinator, not for Introduction.›
  apply (rule thms.S [THEN thms_MP, THEN thms_MP])
      apply (rule_tac [5] thms.K)
       apply (rule_tac [4] thms.K)
         apply simp_all
  done


subsubsection ‹Weakening, left and right›

lemma weaken_left: "G  H;  G|-p  H|-p"
  ― ‹Order of premises is convenient with THEN›
  by (erule thms_mono [THEN subsetD])

lemma weaken_left_cons: "H |- p  cons(a,H) |- p"
  by (erule subset_consI [THEN weaken_left])

lemmas weaken_left_Un1  = Un_upper1 [THEN weaken_left]
lemmas weaken_left_Un2  = Un_upper2 [THEN weaken_left]

lemma weaken_right: "H |- q;  p  propn  H |- pq"
  by (simp_all add: thms.K [THEN thms_MP] thms_in_pl)


subsubsection ‹The deduction theorem›

theorem deduction: "cons(p,H) |- q;  p  propn   H |- pq"
  apply (erule thms.induct)
      apply (blast intro: thms_I thms.H [THEN weaken_right])
     apply (blast intro: thms.K [THEN weaken_right])
    apply (blast intro: thms.S [THEN weaken_right])
   apply (blast intro: thms.DN [THEN weaken_right])
  apply (blast intro: thms.S [THEN thms_MP [THEN thms_MP]])
  done


subsubsection ‹The cut rule›

lemma cut: "H|-p;  cons(p,H) |- q   H |- q"
  apply (rule deduction [THEN thms_MP])
    apply (simp_all add: thms_in_pl)
  done

lemma thms_FlsE: "H |- Fls; p  propn  H |- p"
  apply (rule thms.DN [THEN thms_MP])
   apply (rule_tac [2] weaken_right)
    apply (simp_all add: propn.intros)
  done

lemma thms_notE: "H |- pFls;  H |- p;  q  propn  H |- q"
  by (erule thms_MP [THEN thms_FlsE])


subsubsection ‹Soundness of the rules wrt truth-table semantics›

theorem soundness: "H |- p  H |= p"
    unfolding logcon_def
  apply (induct set: thms)
      apply auto
  done


subsection ‹Completeness›

subsubsection ‹Towards the completeness proof›

lemma Fls_Imp: "H |- pFls; q  propn  H |- pq"
  apply (frule thms_in_pl)
  apply (rule deduction)
   apply (rule weaken_left_cons [THEN thms_notE])
     apply (blast intro: thms.H elim: ImpE)+
  done

lemma Imp_Fls: "H |- p;  H |- qFls  H |- (pq)Fls"
  apply (frule thms_in_pl)
  apply (frule thms_in_pl [of concl: "qFls"])
  apply (rule deduction)
   apply (erule weaken_left_cons [THEN thms_MP])
   apply (rule consI1 [THEN thms.H, THEN thms_MP])
    apply (blast intro: weaken_left_cons elim: ImpE)+
  done

lemma hyps_thms_if:
    "p  propn  hyps(p,t) |- (if is_true(p,t) then p else pFls)"
  ― ‹Typical example of strengthening the induction statement.›
  apply simp
  apply (induct_tac p)
    apply (simp_all add: thms_I thms.H)
  apply (safe elim!: Fls_Imp [THEN weaken_left_Un1] Fls_Imp [THEN weaken_left_Un2])
  apply (blast intro: weaken_left_Un1 weaken_left_Un2 weaken_right Imp_Fls)+
  done

lemma logcon_thms_p: "p  propn;  0 |= p  hyps(p,t) |- p"
  ― ‹Key lemma for completeness; yields a set of assumptions satisfying p›
  apply (drule hyps_thms_if)
  apply (simp add: logcon_def)
  done

text ‹
  For proving certain theorems in our new propositional logic.
›

lemmas propn_SIs = propn.intros deduction
  and propn_Is = thms_in_pl thms.H thms.H [THEN thms_MP]

text ‹
  The excluded middle in the form of an elimination rule.
›

lemma thms_excluded_middle:
    "p  propn;  q  propn  H |- (pq)  ((pFls)q)  q"
  apply (rule deduction [THEN deduction])
    apply (rule thms.DN [THEN thms_MP])
     apply (best intro!: propn_SIs intro: propn_Is)+
  done

lemma thms_excluded_middle_rule:
  "cons(p,H) |- q;  cons(pFls,H) |- q;  p  propn  H |- q"
  ― ‹Hard to prove directly because it requires cuts›
  apply (rule thms_excluded_middle [THEN thms_MP, THEN thms_MP])
     apply (blast intro!: propn_SIs intro: propn_Is)+
  done


subsubsection ‹Completeness -- lemmas for reducing the set of assumptions›

text ‹
  For the case prophyps(p,t)-cons(#v,Y) |- p we also have prophyps(p,t)-{#v}  hyps(p, t-{v}).
›

lemma hyps_Diff:
    "p  propn  hyps(p, t-{v})  cons(#vFls, hyps(p,t)-{#v})"
  by (induct set: propn) auto

text ‹
  For the case prophyps(p,t)-cons(#v  Fls,Y) |- p we also have
  prophyps(p,t)-{#vFls}  hyps(p, cons(v,t)).
›

lemma hyps_cons:
    "p  propn  hyps(p, cons(v,t))  cons(#v, hyps(p,t)-{#vFls})"
  by (induct set: propn) auto

text ‹Two lemmas for use with weaken_left›

lemma cons_Diff_same: "B-C  cons(a, B-cons(a,C))"
  by blast

lemma cons_Diff_subset2: "cons(a, B-{c}) - D  cons(a, B-cons(c,D))"
  by blast

text ‹
  The set termhyps(p,t) is finite, and elements have the form
  term#v or term#vFls; could probably prove the stronger
  prophyps(p,t)  Fin(hyps(p,0)  hyps(p,nat)).
›

lemma hyps_finite: "p  propn  hyps(p,t)  Fin(v  nat. {#v, #vFls})"
  by (induct set: propn) auto

lemmas Diff_weaken_left = Diff_mono [OF _ subset_refl, THEN weaken_left]

text ‹
  Induction on the finite set of assumptions termhyps(p,t0).  We
  may repeatedly subtract assumptions until none are left!
›

lemma completeness_0_lemma [rule_format]:
    "p  propn;  0 |= p  t. hyps(p,t) - hyps(p,t0) |- p"
  apply (frule hyps_finite)
  apply (erule Fin_induct)
   apply (simp add: logcon_thms_p Diff_0)
  txt ‹inductive step›
  apply safe
   txt ‹Case prophyps(p,t)-cons(#v,Y) |- p
   apply (rule thms_excluded_middle_rule)
     apply (erule_tac [3] propn.intros)
    apply (blast intro: cons_Diff_same [THEN weaken_left])
   apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
     hyps_Diff [THEN Diff_weaken_left])
  txt ‹Case prophyps(p,t)-cons(#v  Fls,Y) |- p
  apply (rule thms_excluded_middle_rule)
    apply (erule_tac [3] propn.intros)
   apply (blast intro: cons_Diff_subset2 [THEN weaken_left]
     hyps_cons [THEN Diff_weaken_left])
  apply (blast intro: cons_Diff_same [THEN weaken_left])
  done


subsubsection ‹Completeness theorem›

lemma completeness_0: "p  propn;  0 |= p  0 |- p"
  ― ‹The base case for completeness›
  apply (rule Diff_cancel [THEN subst])
  apply (blast intro: completeness_0_lemma)
  done

lemma logcon_Imp: "cons(p,H) |= q  H |= pq"
  ― ‹A semantic analogue of the Deduction Theorem›
  by (simp add: logcon_def)

lemma completeness:
     "H  Fin(propn)  p  propn  H |= p  H |- p"
  apply (induct arbitrary: p set: Fin)
   apply (safe intro!: completeness_0)
  apply (rule weaken_left_cons [THEN thms_MP])
   apply (blast intro!: logcon_Imp propn.intros)
  apply (blast intro: propn_Is)
  done

theorem thms_iff: "H  Fin(propn)  H |- p  H |= p  p  propn"
  by (blast intro: soundness completeness thms_in_pl)

end