Theory Denotation

(*  Title:      ZF/IMP/Denotation.thy
    Author:     Heiko Loetzbeyer and Robert Sandner, TU München
*)

section ‹Denotational semantics of expressions and commands›

theory Denotation imports Com begin

subsection ‹Definitions›

consts
  A     :: "i  i  i"
  B     :: "i  i  i"
  C     :: "i  i"

definition
  Gamma :: "[i,i,i]  i"  (Γ) where
  "Γ(b,cden) 
    (λphi. {io  (phi O cden). B(b,fst(io))=1} 
           {io  id(loc->nat). B(b,fst(io))=0})"

primrec
  "A(N(n), sigma) = n"
  "A(X(x), sigma) = sigma`x"
  "A(Op1(f,a), sigma) = f`A(a,sigma)"
  "A(Op2(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"

primrec
  "B(true, sigma) = 1"
  "B(false, sigma) = 0"
  "B(ROp(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
  "B(noti(b), sigma) = not(B(b,sigma))"
  "B(b0 andi b1, sigma) = B(b0,sigma) and B(b1,sigma)"
  "B(b0 ori b1, sigma) = B(b0,sigma) or B(b1,sigma)"

primrec
  "C(\<SKIP>) = id(loc->nat)"
  "C(x \<ASSN> a) =
    {io  (loc->nat) × (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
  "C(c0\<SEQ> c1) = C(c1) O C(c0)"
  "C(\<IF> b \<THEN> c0 \<ELSE> c1) =
    {io  C(c0). B(b,fst(io)) = 1}  {io  C(c1). B(b,fst(io)) = 0}"
  "C(\<WHILE> b \<DO> c) = lfp((loc->nat) × (loc->nat), Γ(b,C(c)))"


subsection ‹Misc lemmas›

lemma A_type [TC]: "a  aexp; sigma  loc->nat  A(a,sigma)  nat"
  by (erule aexp.induct) simp_all

lemma B_type [TC]: "b  bexp; sigma  loc->nat  B(b,sigma)  bool"
by (erule bexp.induct, simp_all)

lemma C_subset: "c  com  C(c)  (loc->nat) × (loc->nat)"
  apply (erule com.induct)
      apply simp_all
      apply (blast dest: lfp_subset [THEN subsetD])+
  done

lemma C_type_D [dest]:
    "x,y  C(c); c  com  x  loc->nat  y  loc->nat"
  by (blast dest: C_subset [THEN subsetD])

lemma C_type_fst [dest]: "x  C(c); c  com  fst(x)  loc->nat"
  by (auto dest!: C_subset [THEN subsetD])

lemma Gamma_bnd_mono:
  "cden  (loc->nat) × (loc->nat)
     bnd_mono ((loc->nat) × (loc->nat), Γ(b,cden))"
  by (unfold bnd_mono_def Gamma_def) blast

end