Theory AC7_AC9

(*  Title:      ZF/AC/AC7_AC9.thy
    Author:     Krzysztof Grabczewski

The proofs needed to state that AC7, AC8 and AC9 are equivalent to the previous
instances of AC.
*)

theory AC7_AC9
imports AC_Equiv
begin

(* ********************************************************************** *)
(* Lemmas used in the proofs AC7 ⟹ AC6 and AC9 ⟹ AC1                  *)
(*  - Sigma_fun_space_not0                                                *)
(*  - Sigma_fun_space_eqpoll                                              *)
(* ********************************************************************** *)

lemma Sigma_fun_space_not0: "0A; B  A  (nat->(A)) * B  0"
by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1])

lemma inj_lemma: 
        "C  A  (λg  (nat->(A))*C.   
                (λn  nat. if(n=0, snd(g), fst(g)`(n #- 1))))   
                 inj((nat->(A))*C, (nat->(A)) ) "
  unfolding inj_def
apply (rule CollectI)
apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto) 
apply (rule fun_extension, assumption+)
apply (drule lam_eqE [OF _ nat_succI], assumption, simp) 
apply (drule lam_eqE [OF _ nat_0I], simp) 
done

lemma Sigma_fun_space_eqpoll:
     "C  A; 0A  (nat->(A)) * C  (nat->(A))"
apply (rule eqpollI)
apply (simp add: lepoll_def)
apply (fast intro!: inj_lemma)
apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem 
            elim: swap)
done


(* ********************************************************************** *)
(* AC6 ⟹ AC7                                                            *)
(* ********************************************************************** *)

lemma AC6_AC7: "AC6  AC7"
by (unfold AC6_def AC7_def, blast)

(* ********************************************************************** *)
(* AC7 ⟹ AC6, Rubin & Rubin p. 12, Theorem 2.8                          *)
(* The case of the empty family of sets added in order to complete        *)
(* the proof.                                                             *)
(* ********************************************************************** *)

lemma lemma1_1: "y  (B  A. Y*B)  (λB  A. snd(y`B))  (B  A. B)"
by (fast intro!: lam_type snd_type apply_type)

lemma lemma1_2:
     "y  (B  {Y*C. C  A}. B)  (λB  A. y`(Y*B))  (B  A. Y*B)"
apply (fast intro!: lam_type apply_type)
done

lemma AC7_AC6_lemma1:
     "(B  {(nat->(A))*C. C  A}. B)  0  (B  A. B)  0"
by (fast intro!: equals0I lemma1_1 lemma1_2)

lemma AC7_AC6_lemma2: "0  A  0  {(nat -> (A)) * C. C  A}"
by (blast dest: Sigma_fun_space_not0)

lemma AC7_AC6: "AC7  AC6"
  unfolding AC6_def AC7_def
apply (rule allI)
apply (rule impI)
apply (case_tac "A=0", simp)
apply (rule AC7_AC6_lemma1)
apply (erule allE) 
apply (blast del: notI
             intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans 
                    Sigma_fun_space_eqpoll)
done


(* ********************************************************************** *)
(* AC1 ⟹ AC8                                                            *)
(* ********************************************************************** *)

lemma AC1_AC8_lemma1: 
        "B  A. B1 B2. B=B1,B2  B1  B2   
         0  { bij(fst(B),snd(B)). B  A }"
apply (unfold eqpoll_def, auto)
done

lemma AC1_AC8_lemma2:
     "f  (X  RepFun(A,p). X); D  A  (λx  A. f`p(x))`D  p(D)" 
apply (simp, fast elim!: apply_type)
done

lemma AC1_AC8: "AC1  AC8"
  unfolding AC1_def AC8_def
apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2)
done


(* ********************************************************************** *)
(* AC8 ⟹ AC9                                                            *)
(*  - this proof replaces the following two from Rubin & Rubin:           *)
(*    AC8 ⟹ AC1 and AC1 ⟹ AC9                                         *)
(* ********************************************************************** *)

lemma AC8_AC9_lemma:
     "B1  A. B2  A. B1  B2 
       B  A*A. B1 B2. B=B1,B2  B1  B2"
by fast

lemma AC8_AC9: "AC8  AC9"
  unfolding AC8_def AC9_def
apply (intro allI impI)
apply (erule allE)
apply (erule impE, erule AC8_AC9_lemma, force) 
done


(* ********************************************************************** *)
(* AC9 ⟹ AC1                                                            *)
(* The idea of this proof comes from "Equivalents of the Axiom of Choice" *)
(* by Rubin & Rubin. But (x * y) is not necessarily equipollent to        *)
(* (x * y) ∪ {0} when y is a set of total functions acting from nat to   *)
(* ⋃(A) -- therefore we have used the set (y * nat) instead of y.     *)
(* ********************************************************************** *)

lemma snd_lepoll_SigmaI: "b  B  X  B × X"
by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll 
                 prod_commute_eqpoll) 

lemma nat_lepoll_lemma:
     "0  A; B  A  nat  ((nat  (A)) × B) × nat"
by (blast dest: Sigma_fun_space_not0 intro: snd_lepoll_SigmaI)

lemma AC9_AC1_lemma1:
     "0A;  A0;   
         C = {((nat->(A))*B)*nat. B  A}    
             {cons(0,((nat->(A))*B)*nat). B  A};  
         B1  C;  B2  C   
       B1  B2"
by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll
                     nat_cons_eqpoll [THEN eqpoll_trans] 
                     prod_eqpoll_cong [OF _ eqpoll_refl]
             intro: eqpoll_trans eqpoll_sym )

lemma AC9_AC1_lemma2:
     "B1  {(F*B)*N. B  A}  {cons(0,(F*B)*N). B  A}.   
      B2  {(F*B)*N. B  A}  {cons(0,(F*B)*N). B  A}.   
        f`B1,B2  bij(B1, B2)   
       (λB  A. snd(fst((f`<cons(0,(F*B)*N),(F*B)*N>)`0)))  (X  A. X)"
apply (intro lam_type snd_type fst_type)
apply (rule apply_type [OF _ consI1]) 
apply (fast intro!: fun_weaken_type bij_is_fun)
done

lemma AC9_AC1: "AC9  AC1"
  unfolding AC1_def AC9_def
apply (intro allI impI)
apply (erule allE)
apply (case_tac "A≠0")
apply (blast dest: AC9_AC1_lemma1 AC9_AC1_lemma2, force) 
done

end