Embedded Multicore Building Blocks Tutorial

Contents

Introduction
Overview
Outline
Functions, Functors, and Lambdas

Algorithms
Function Invocation
Sorting
Counting
Foreach Loops
Reductions
Prefix Computations

Dataflow
Linear Pipelines
Nonlinear Pipelines

Containers
Object Pools
Stacks
Queues

MTAPI
Foundations
C Interface
C++ Interface
Plugins

Heterogeneous Systems
Algorithms
Dataflow

Tutorial Application
Bibliography

Introduction
Overview

The Embedded Multicore Building Blocks (EMB?) are an easy to use yet powerful and efficient
C/C++ library for the development of parallel applications. EMB? has been specifically designed
for embedded systems and the typical requirements that accompany them, such as real-time ca-
pability and constraints on memory consumption. As a major advantage, low-level operations are
hidden in the library which relieves software developers from the burden of thread management
and synchronization. This not only improves productivity of parallel software development, but
also results in increased reliability and performance of the applications.

EMB? is independent of the hardware architecture (x86, ARM, ...) and runs on various platforms,
from small devices to large systems containing numerous processor cores. It builds on MTAPI, a
standardized programming interface for leveraging task parallelism in embedded systems containing
symmetric or asymmetric (heterogeneous) multicore processors. A core feature of MTAPI is low-
overhead scheduling of fine-grained tasks among the available cores during runtime. Unlike existing
libraries, EMB? supports task priorities and affinities, which allows the creation of soft real-time
systems. Additionally, the scheduling strategy can be optimized for non-functional requirements
such as minimal latency and fairness.

Besides the task scheduler, EMB? provides basic parallel algorithms, concurrent data structures,
and skeletons for implementing stream processing applications (see Figure 1). These building
blocks are largely implemented in a non-blocking fashion, thus preventing frequently encountered
pitfalls like lock contention, deadlocks, and priority inversion. As another advantage in real-time
systems, the algorithms and data structures give certain progress guarantees. For example, wait-
free data structures guarantee system-wide progress which means that every operation completes
within a finite number of steps independently of any other concurrent operations on the same data
structure.

Application

Dataflow Algorithms

Containers

>~ EMB?2
Task management (MTAPI)

Base library (abstraction layer)

Operating system

Hardware

Figure 1: Main Building Blocks of EMB?

Outline

The purpose of this document is to introduce the basic concepts of EMB? and to demonstrate
typical application scenarios by means of simple examples. The tutorial is not intended to be
complete in the sense that it describes every feature of EMB2. For a detailed description of the
API, please see the reference manual.

In the next subsection, we briefly describe the concept of function objects which is essential for
using EMB2. We then present various parallel algorithms and the dataflow framework. After that,
we explain the usage of MTAPI and how to leverage heterogeneous systems. The complete source
code for the examples presented in the following can be found in the examples directory.

Functions, Functors, and Lambdas

Throughout this tutorial, we will encounter C++ types which model the C++ concept
FunctionObject. The function object concept comprises function pointer, functor, and lambda
types that are callable with suitable arguments by the function call syntax. Given a function
object £ and arguments argl, arg2, ..., the expression f (argl, arg2, ...) is a valid function
invocation. If you are already familiar with function objects, you can safely skip the rest of this
section. Otherwise, it might be worth reading it to get an idea of what is meant when talking
about a function objects.

Consider, for example, the transformation of an iterable range of data values. Specifically, consider
a vector of integers initialized as follows:

std: :vector<int> range(5);
for (size_t i=0; i < range.size(); i++) {
range[i] = static_cast<int>(i) + 1;

}

The range consists of the values (1, 2, 3, 4, 5). To double each value, we could simply iterate
over the vector as follows:

for (size_t i=0; i < range.size(); i++) {
range[i] *= 2;

3

The range then contains the values (2, 4, 6, 8, 10). In order to demonstrate the concept of
function objects, we are now going to use the std::for_each function defined in the algorithm
header of the C++ Standard Library. This function accepts as argument a UnaryFunction, that
is, a function object which takes only one argument. In case of std::for_each, the argument has
to have the same type as the elements in the range, as these are passed to the unary function. In
our example, the unary function’s task is to double the passed value. We could define a function
for that purpose:

void DoubleFunction(int& to_double) {
to_double *= 2;
}

Since a function pointer models the concept of function objects, we can simply pass
&DoubleFunction to std::for_each:

std: :for_each(range.begin(), range.end(), &DoubleFunction);
Another possibility is to define a functor

struct DoubleFunctor {
void operator() (int& to_double) {
to_double *= 2;
}
};

and to pass an instance of this class to std: :for_each:
std: :for_each(range.begin(), range.end(), DoubleFunctor());

Functors as well as function pointers separate the actual implementation from its usage which can
be helpful if the functionality is needed at different places. In many cases, however, it is easier to
have the implementation of the function object at the same place as it is used. C++11 provides
lambda expressions for that purpose which make our example more concise:

std: :for_each(range.begin(), range.end(),
[1 (int& to_double) { to_double *= 2; 1});

Of course, this example is too simple to really benefit from function objects and the algorithms
contained in the C++ Standard Library. However, in combination with the parallelization features
provided by EMB?2, function objects are very useful. Within this document, whenever a function
object or one of its subtypes is required, one can use a function pointer, a functor, or a lambda. For
simplicity, we will restrict ourselves to lambdas in subsequent examples, as they are most suitable
for this tutorial.

Algorithms

The Algorithms building block of EMB? provides high-level constructs for typical parallelization
tasks. They are similar to the functions provided by the C++ Standard Library, but contain addi-

tional functionality typical for embedded systems such as task priorities. Although the algorithms
can be used in a black-box way, it is good to have a basic understanding of their implementation:
The algorithms split computations to be performed in parallel into tasks which are executed by the
MTAPT task scheduler (see chapter on MTAPT). For that purpose, the tasks are stored in queues
and mapped to a fixed number of worker threads at runtime.

Note: The algorithms are implemented using the MTAPI C++ interface. Since MTAPI allo-
cates the necessary data structures during initialization, the maximum number of tasks in flight
is fixed. In case one of the algorithms exceeds this limit, an exception is thrown. By calling
embb: :mtapi: :Node: :Initialize, the mazrimum number of tasks and other limits can be cus-
tomized. Faxplicit initialization also eliminates unexpected delays when measuring performance.
See the section on the MTAPI C++ Interface for details.

Function Invocation

Let us start with the parallel execution of several work packages encapsulated in functions. Suppose
that the following functions operate on different data sets and are thus independent of each other:

void WorkPackageA();
void WorkPackageB();
void WorkPackageC() ;

The functions can be executed in parallel using the ParallelInvoke construct provided by EMB2:

using embb::algorithms::Invoke;
Invoke (WorkPackageA, WorkPackageB, WorkPackageC) ;

Note that ParallelInvoke waits until all its arguments have finished execution.

Next, let us consider a more elaborate example. The following piece of code shows a sequential
implementation of the quicksort algorithm, which we want to parallelize (do not care about the
details of the Partition function for the moment):

void QuickSort(int* first, int* last) {
if (last - first <= 1) return;
int* mid = Partition(first, last);
QuickSort(first, mid);
QuickSort(mid, last);

+

A straightforward approach to parallelize this algorithm is to execute the recursive calls to
Quicksort in parallel. With ParallelInvoke and lambdas, it is as simple as that:

void ParallelQuickSort(int* first, int* last) {
if (last - first <= 1) return;
int* mid = Partition(first, last);
using embb::algorithms::Invoke;
Invoke([=])O{ParallelQuickSort(first, mid);},
[=] O{ParallelQuickSort(mid, last);});
}

The lambdas capture the first, mid, and last pointers to the range to be sorted and forward them
to the recursive calls of quicksort. These are executed in parallel, where Invoke does not return
before both have finished execution. The above implementation of parallel quicksort is not yet
optimal. In particular, the creation of new tasks should be stopped when a certain lower bound on
the size of the subranges has been reached. The subranges can then be sorted sequentially in order
to reduce the overhead for task creation and management. Fortunately, EMB? already provides
solutions for parallel sorting, which will be covered in the following section.

Sorting

For systems with constraints on memory consumption, the quicksort implementation provided
by EMB? is usually the best choice, since it works in-place, which means that it does not require
additional memory. Considering real-time systems, however, its worst-case runtime of O(n?), where
n is the number of elements to be sorted, can be a problem. For this reason, EMB? also provides
a parallel merge sort algorithm. Merge sort does not work in-place, but has a predictable runtime
complexity of (n log n). Assume we want to sort a vector of integers:

std::vector<int> range;
Using quicksort, we simply write:

using embb::algorithms::QuickSort;
QuickSort(range.begin(), range.end());

The default invocation of QuickSort uses std::less with the iterators’ value_type as compar-
ison operation. As a result, the range is sorted in ascending order. It is possible to provide a
custom comparison operation, for example std: :greater, by passing it as a function object to the
algorithm. Sorting the elements in descending can be accomplished as follows:

QuickSort (range.begin(), range.end(), std::greater<int>());

The merge sort algorithm comes in two versions. The first version automatically allocates dynamic
memory for temporary values when the algorithm is called. Its name is MergeSortAllocate and
it has the same parameters as QuickSort. To enable the use of merge sort in environments that
forbid dynamic memory allocation after initialization, the second version can be called with a
pre-allocated temporary range of values:

using embb::algorithms: :MergeSort;
std::vector<int> temporary_range(range.size());
MergeSort (range.begin(), range.end(), temporary_range.begin());

The temporary range can be allocated at any time, e.g., during the initialization phase of the
system.

Counting

EMB? also provides functions for counting the number of elements in a range. Consider a range
of integers from 0 to 3:

int rangel[] = {0, 3, 2, 0, 1, 1, 3, 2};

To determine how often a specific value appears within the range, we could simply iterate over it
and compare each element with the specified one. The Count function does this in parallel, where
the first two arguments specify the range and the third one the element to be counted:

std::iterator_traits<int*>::difference_type count;
using embb::algorithms::Count;
count = Count(range, range + 8, 1);

For the range given above, we have count ==

In case the comparison operation is not equality, we can employ the CountIf function. Here, the
third argument is a unary predicate which evaluates to true for each element to be counted. The
following example shows how to count the number of values greater than 0:

using embb::algorithms::CountIf;
count = CountIf(range, range + 8,
[1(const int& value) -> bool { return value > 0; });

Foreach Loops

A frequently encountered task in parallel programming is to apply some operation to a range
of values, as illustrated previously. In principle, one could apply the operation to all elements
in parallel provided that there are no data dependencies. However, this results in unnecessary
overhead if the number of elements is greater than the number of available processor cores p.
A better solution is to partition the range into p blocks and to process the elements of a block
sequentially. With the ForEach construct provided by EMB?2, users do not have to care about the
partitioning, since this is done automatically. Similar to the Standard Library’s for_each function,
it is sufficient to pass the operation in form of a function object. The following piece of code shows
how to double the elements of a range in parallel:

using embb::algorithms: :ForEach;
ForEach(range.begin(), range.end(),
[T (int& to_double) { to_double *= 2; });

There is also a ForLoop variant that accepts integers as limits of the range:

using embb::algorithms: :ForLoop;
ForLoop(0, int(range.size()),
[&] (int to_double) { rangelsize_t(to_double)] = (to_double + 1) * 2; 1});

In the above code snippet, the results of the computation overwrite the input. If the input has to
be left unchanged, the results must be written to a separate output range. Thus, the operation
requires two ranges. EMB?2 supports such scenarios by the ZipIterator, which wraps two iterators
into one. Consider the following revised example:

std::vector<int> input_range(5);

for (size_t i=0; i < input_range.size(); i++) {
input_range[i] = static_cast<int>(i) + 1;

}

std: :vector<int> output_range(5);

Using the Zip function as a convenient way to create a zip iterator, the doubling of elements can
be performed as follows:

using embb::algorithms::Zip;
using embb::algorithms::ZipPair;
ForEach(Zip(input_range.begin(), output_range.begin()),
Zip(input_range.end(), output_range.end()),
[1 (ZipPair<int&, int&> pair) {
pair.Second() = pair.First() * 2;

B

The argument to the lambda function is a ZipPair with the iterators’ reference value as template
parameters. The elements pointed to by the zip iterator can be accessed via First () and Second (),
similar to std: :pair.

Reductions

As mentioned in the previous section, the ForEach construct requires the loop iterations do be
independent of each other. However, this is not always the case. Imagine we want to sum up the
values of a range, e.g., a vector of integers:

std: :vector<int> range(5);
for (size_t i = 0; i < range.size(); i++) {
range[i] = static_cast<int>(i) + 1;

}
Sequentially, this can be done by a simple loop:

int sum = O;
for (size_t i = 0; i < range.size(); i++) {
sum += rangel[i];

3

One might be tempted to sum up the elements in parallel using a foreach loop. The problem is that
parallel accesses to sum must be synchronized to avoid race conditions, which in fact sequentializes
the loop. A more efficient approach is to compute intermediate sums for each block of the range
and to sum them up at the end. For such purposes, EMB? provides the function Reduce:

using embb::algorithms: :Reduce;
sum = Reduce(range.begin(), range.end(), 0, std::plus<int>());

The third argument to Reduce is the neutral element of the reduction operation, i.e., the element
that does not change the result. In case of addition (std::plus), the neutral element is 0. If we
wanted to compute the product of the vector elements, the neutral element would be 1.

Next, let us consider the parallel computation of a dot product. Given two input ranges, we want
to multiply each pair of input elements and sum up the products. The second input range is given
as follows:

std::vector<int> second_range(5);
for (size_t i = 0; i < range.size(); i++) {
second_range[i] = static_cast<int>(i) + 5;

3

The reduction consists of two steps: First, the input ranges are transformed and then, the reduction
is performed on the transformed range. For that purpose, the Reduce function allows to specify a
transformation function object. By default, this is the identity functor which does not modify the
input range. To implement the dot product, we can use the Zip function and a lambda function
for computing the transformed range:

using embb::algorithms::Zip;
using embb::algorithms::ZipPair;
int dot_product = Reduce(Zip(range.begin(), second_range.begin()),
Zip(range.end(), second_range.end()),
0,
std: :plus<int>(),
[1(const ZipPair<int&, int&>& pair) {
return pair.First() * pair.Second();

B;

Prefix Computations

Prefix computations (or scans) can be viewed as a generalization of reductions. They transform
an input range z; into an output range y; with ¢=1,..,n such that

Yo =1id - T

Y1 = Yo ~ Z1

Yi = Yi-1 -~ T

Yn = Yn-1 °~ Tn,

where id is the identity (neutral element) with respect to the - operation. As an example, consider
the following range:

std: :vector<int> input_range(5);
for (size_t i = 0; i < input_range.size(); i++) {
input_range[i] = static_cast<int>(i) + 1;

}

Computing the prefix sums of input_range sequentially is easy:

std: :vector<int> output_range(input_range.size());

output_range[0] = input_range[0];

for(size_t i = 1; i < input_range.size(); i++) {
output_range[i] = output_rangel[i-1] + input_rangel[i];

}

Note the dependency on loop iteration i-1 to compute the result in iteration 7. A special two-pass
algorithm is used in the function Scan to perform prefix computations in parallel. Using Scan to
compute the prefix sums, we get:

using embb::algorithms::Scan;
Scan(input_range.begin(), input_range.end(), output_range.begin(),
0, std::plus<int>());

As in the case of reductions, the neutral element has to be given explicitly. Also, a transformation
function can be passed as additional argument to Scan. The elements of the input range are then
transformed before passed to the prefix operation.

Dataflow

EMB? provides generic skeletons for the development of parallel stream-based applications. These
skeletons are based on dataflow networks, a model of computation widely employed in different
domains like digital signal processing and imaging due to its simplicity and flexibility. As a major
advantage, these networks are deterministic which significantly simplifies testing and debugging.
This is particularly important in embedded systems, where high demands are put on correctness
and reliability. Moreover, they are inherently parallel and lend themselves well for execution on
a multicore processor. In fact, they can be viewed as a generalization of pipelining, a frequently
encountered parallel pattern.

Note: Dataflow networks are internally implemented using the MTAPI C++ interface. Since
MTAPI does not allocate memory after initialization, the number of tasks and other resources are
limited. By calling embb: :mtapi: :Node: :Initialize, these limits can be customized. FExplicit
initialization also eliminates unexpected delays when measuring performance. See the section on
the MTAPI C++ Interface for details.

Linear Pipelines

Before we go into detail, we demonstrate the basic concepts of dataflow networks by means of
a simple application which finds and replaces strings in a file. Let us start with the sequential
implementation. The program shown in Listing 1 reads a file line by line and replaces each
occurrence of a given string with a new string.

#include <iostream>
#include <fstream>
#include <string>

#include <cstdlib>

using namespace std;

// replace all ocurrences of 'what' in 'str' with 'with'’
void repl(string& str, const string &what,
const string& with) {
string: :size_type pos = 0;
while((pos = str.find(what, pos)) != string::npos) {
str.replace(pos, what.length(), with);
pos += with.length();

}
}

int main(int argc, char *argv([]) {
// check and read command line arguments
if(argc '= 4) {
cerr << "Usage: replace <what> <with> <file>" << endl;
exit (EXIT_FAILURE);
}
const string what(argv[1]), with(argv[2]);

// open input file

ifstream file(argv[3]);

if (1file) {
cerr << '"Cannot open file " << argv[3] << endl;
exit (EXIT_FAILURE);

}

// read input file line by line and replace strings
string str;
while(getline(file, str)) {

repl(str, what, with);

cout << str << endl;

}

// close file and extit
file.close();
exit (EXIT_SUCCESS);

}

Listing 1: Sequential program for replacing strings in a file
The main part consists of the while loop which performs three steps:
1. read a line from file and store it in the string str

2. replace each occurrence of what in str with with
3. write the resulting string to cout

To run this program on a multicore processor, we may execute the above steps in a pipelined
fashion. In this way, a new line can be read from the hard disk while the previous one is still
being processed. Likewise, processing a string and writing the result to standard output can be
performed in parallel. Thus, the pipeline may consist of three stages as depicted in Figure 2.

read process write

1 |
) -

Figure 2: Pipeline for replacing strings in a file

This pipeline can be easily implemented using the dataflow networks. As the first step, we have to
include the dataflow.h header file:

#include <embb/dataflow/dataflow.h>

Then, we have to construct a network. A network consists of a set of processes that are connected by
communication channels. EMB? provides a class Network that handles data routing and scheduling
of your processes:

typedef embb::dataflow::Network Network;

We need to prepare the network for the desired maximum number of elements that can be in the
network at a time. The number of elements is limited to avoid that the network is flooded with
new elements before the previous elements have been processed. In a linear pipeline, for example,
this may happen if the source is faster than the sink. For our example we assume that at most
four elements may be processed simultaneously: one in the source, one in the sink, and two in the
middle stage.

Network network(4);

Finding an optimal value depends on the application and usually requires some experimentation.
In general, large values boost the throughput but also increase the latency. Conversely, small
values reduce the latency but may lead to a drop of performance in terms of throughput.

As the next step, we have to construct the processes shown in Figure 2. The easiest way to
construct a process is to wrap the user-defined code in a lambda function and to pass it to the
network. The network constructs an object for that process and executes the lambda function
whenever new data is available. There are several methods for constructing processes depending
on their type. The process read is a source process, since it produces data (by reading it from the
specified file) but does not consume any data. Source processes are constructed from a function
object

bool SourceFunction(std::string & str) {
if (1file.eof()) {
std::getline(file, str);
return true;
} else {
return false;
}
}

like this:

Network: :Source<std: :string> read(
network, embb::base::MakeFunction(SourceFunction)

)

Note the template argument std: :string to Source. This tells that the process has exactly one
port of type std::string and that this port is used to transmit data to other processes. The
user-defined code can access the ports via the parameters of the function. Thus, each parameter
corresponds to exactly one port. In our example, the result of the process is stored in a variable
str, which is passed by reference.

The replacement of the strings can be done by a parallel process, which means that multiple
invocations of the process may be executed simultaneously. In general, processes that neither
have any side effects nor maintain a state can safely be executed in parallel. This helps to avoid
bottlenecks that arise when some processes are faster than others. Suppose, for example, that
replace requires up to 50 ms to execute, whereas read and write each require 10 ms to execute.
If only one invocation of replace could be executed at a time, the throughput would be at most
20 elements per second. Since replace is a parallel process, however, the network may start a
new invocation every 10 ms. Hence, up to five invocations may be executed in parallel, yielding
a throughput of 100 elements per second. To compensate for variations in the runtime of parallel
stages, they may be executed out-of-order. As a result, the order in which the elements of a stream
enter and leave parallel stages is not necessarily preserved. In our example, the runtime of replace
may vary significantly due to the fact that not all lines have the same length and that the number
of replacements depends on the content. Before we go into more detail, let us first consider the
following function

void ReplaceFunction(std::string const & istr, std::string & ostr) {
ostr = istr;

10

repl(ostr, what, with);
}

and how to construct the corresponding replace process:

Network: :ParallelProcess<
Network: :Inputs<std::string>,
Network: :Outputs<std::string> > replace(
network, embb::base::MakeFunction(ReplaceFunction)

);

The template parameter Network: : Inputs<std: :string> specifies that the process has one port
serving as input. Analogously, Network: :Outputs<std: :string> specifies that there is one port
serving as output.

Since the last process (write) does not have any outputs, we make it a Sink. Unlike parallel
processes, sinks are always executed in-order. EMB? takes care that the elements are automatically
reordered according to their original order in the stream. This way, the externally visible behavior
is preserved even if some parallel stages may be executed out-of-order. The function

void SinkFunction(std::string const & str) {
std::cout << str << std::endl;

}
is used to construct the sink:

Network: :Sink<std::string> write(
network, embb: :base: :MakeFunction(SinkFunction)

)

Note: If you parallelize an application using EMB? and your compiler emits a lengthy error
message containing lots of templates, it is very likely that for at least one process, the ports and
their directions do not match the signature of the given function.

As the last step, we have to connect the processes (ports). This is straightforward using the C++
stream operator:

read >> replace >> write;
Then, we can start the network:
network() ;

Note that you will probably not observe a speedup when you run this program on a multicore
processor. Omne reason for this is that I/O operations like reading a file from the hard disk and
writing the output to the screen are typically a bottleneck. Moreover, the amount of work done
in the middle stage of the pipeline (replace) is rather low. To outweigh the overhead for parallel
execution, the amount of work must be much higher. In image processing, for example, a single
pipeline stage may process a complete image. To sum up, we have chosen this example for its
simplicity, not for its efficiency.

Nonlinear Pipelines

Some applications exhibit a more complex structure than the linear pipeline presented in the
previous section. Typical examples are applications where the result of a pipeline stage is used by
more than one successor stage. Such pipelines are said to be nonlinear. In principle, every nonlinear
pipeline can be transformed to a linear one as depicted in Figure 3. However, this increases the
latency and complicates the implementation due to data that must be passed through intermediate
stages. In Figure 3, for example, the data transferred from stage A to stage C must be passed
through stage B in the linearized implementation.

11

\C/')
TN 7 :

Figure 3: Nonlinear pipeline and linearized variant

B

Nonlinear pipelines can be implemented as they are using EMB?2, i.e., there is need not linearize
them. As an example, let us consider the implementation of a sorting network. Sorting networks
consist of a set of interconnected comparators and are used to sort sequences of data items. As
depicted in Figure 4, each comparator sorts a pair of values by putting the smaller value to one
output, and the larger one to the other output. Thus, a comparator can be viewed as a switch that
transfers the values at the inputs to the outputs, either directly or by swapping them (cf. Figure 5).

@ —> —— min(a, b)

b — — max(a,b)

Figure 4: Block diagram of a comparator

3 —>t---- 3 9 NI

Figure 5: Example for the operating principle of a comparator

Figure 6 shows a sorting network with four inputs/outputs and five comparators. The numbers
at the interconnections exemplify a “run” of the network. As can be seen from Figure 6, the
comparators C;-C; “sink” the largest value to the bottom and “float” the smallest value to the
top. The final comparator C5 simply sorts out the middle two values. This way it is guaranteed
that the values at the outputs occur in ascending order.

3

3 > > 1
Cy

2 4 ! > } > 2

Ch,

4 4 'y 2, 3

Cy
2
1 > >/

Figure 6: Sorting network with four inputs/outputs and five comparators

Let us now consider the implementation of the sorting network using EMB2. As in the previous
example, we need three types of processes: one or more sources that produce a stream of data
items, a total number of five processes that implement the comparators, and one or more sinks
that consume the sorted sequences. The processes should be generic so that they can be used with

12

different types. For example, in one application we might use the network to sort integers, and in
another application to sort floating point values.

The following listing shows the implementation of the source processes using classes instead of
functions (a complete implementation can be found in the examples directory):

template <typename T>
class Producer {
public:
explicit Producer(int seed) : seed_(seed), count_(4) {}
bool Run(T& x) {
if (count_ >= 0) {
// produce a new value T
x = SimpleRand(seed_);
count_--;
return true;
} else {
return false;
}
}

private:
int seed_;
int count_;

};

The class-based approach has several advantages besides the use of templates: Firstly, the creation
of multiple processes is straightforward. Secondly, one can derive other processes from a given
base class such as Producer. Thirdly, it eases migration of existing code. For example, if you
want to use an object of an existing class foo as a process, you might derive a class bar from foo
implementing any missing functionality.

To feed our sorting network nw with four streams of integer values, we may write:

Producer<int>
producer1 (1),
producer2(2),
producer3(3),
producer4 (4) ;

Network: :Source<int>

sourcel (

network,

embb: :base: :MakeFunction(producerl, &Producer<int>::Run)),
source2(

network,

embb: :base: :MakeFunction(producer2, &Producer<int>::Run)),
source3(

network,

embb: :base: :MakeFunction(producer3, &Producer<int>::Run)),
source4 (

network,

embb: :base: :MakeFunction(producer4, &Producer<int>::Run));

The code for the comparators looks like this:

template <typename T>
class Comparator {
public:
void Run(const T& a, const T& b, T& x, T& y) {

13

std::min(a,b);
std::max(a,b);

X

y
}

};

Since the comparators neither have any side effects nor maintain a state, we allow multiple invo-
cations to be executed in parallel.

To check whether the resulting values are sorted, we use a single sink with four inputs:

template <typename T>
class Consumer {
public:
void Run(const T& x1, const T& x2, const T& x3, const T& x4) {
if (x1 <= x2 && x2 <= x3 && x3 <= x4) {
// consume values
}
}
};

We could also have a sink for each output of the sorting network. There is no restriction on the
number of sources and sinks a network may have.

Containers

Containers are essential for storing objects in an organized way. Unfortunately, the containers
provided by the C++ Standard Library are not thread-safe. Attempts to read and write elements
concurrently may corrupt the stored data. While such undefined behavior can be avoided by
synchronizing all accesses using a mutex, this largely limits the available parallelism.

The containers provided by EMB? enable a high degree of parallelism by design. They are im-
plemented in a lock-free or wait-free fashion, thus avoiding any blocking operations. This way,
multiple threads or tasks may access a container concurrently without suffering from typical side
effects like convoying. Wait-free algorithms even guarantee that an operation completes within a
bounded number of steps. Consequently, threads are immune to starvation which is critical for
real-time systems.

In embedded systems, memory is often preallocated in the initialization phase to minimize the effort
for memory management during operation and to prevent unpredictable out-of-memory errors.
EMB? containers have a fixed capacity and allocate the required memory at construction time.
Consequently, they can be used in safety-critical application, where dynamic memory allocation
after initialization is forbidden.

Object Pools

An object pool allocates a fixed number of objects at construction. Objects can then be allo-
cated from the pool and returned for later reuse. When implementing lock-free or wait-free algo-
rithms, the underlying memory allocation scheme also has to be lock-free or wait-free, respectively.
However, memory allocation functions such as new and delete usually do not give any progress
guarantees. To solve this problem, EMB? provides lock-free and wait-free object pools.

Listing 2 shows an example, where we create a pool containing five objects of type int. As the
second step, we allocate five objects from the pool and store the obtained pointers in a temporary
array. Finally, we deallocate them by calling Free on each pointer.

embb: : containers: :0bjectPool<int> objPool(5); // create

int* alloc[5];

14

for (int 1 = 0; i '= 5; ++i) {

alloc[i] = objPool.Allocate(); // allocate
}
for (int 1 = 0; i '= 5; ++i) {
objPool.Free(alloc[il); // free
}

Listing 2: Object pool — initialization, allocation, and deallocation

For allocating and deallocating objects, the object pool’s implementation relies on a value pool
which keeps track of the objects in use. If the value pool is implemented in a lock-free manner, the
object pool is lock-free as well (analogously for wait-free pools). Currently, EMB?2 provides two
value pools: WaitFreeArrayValuePool and LockFreeTreeValuePool. Normally (if nothing else is
specified), the wait-free pool is used. For having a lock-free object pool instead, one has to specify
the corresponding value pool as additional template parameter. If we replace the first line of the
previous example with the following lines, the object pool is not wait-free anymore but lock-free
(the values are of type int and initialized with 0):

embb: :containers::0bjectPool<int,
embb: :containers: :LockFreeTreeValuePool< int, O >> objPool(5);

This will result in a speed-up for most applications, but progress guarantees are weaker.

Stacks

As the name indicates, the class template LockFreeStack implements a lock-free stack which
stores elements according to the LIFO (Last-In, First-Out) principle. The stack provides two
methods, TryPush and TryPop, both returning a Boolean value indicating success of the operation:
TryPop returns false if the stack is empty, and TryPush returns false if the stack is full. If
successful, TryPop returns the element removed from the stack via reference. Listing 3 shows a
simple example. First, we create a stack of integers with a capacity of 10 elements (due to necessary
over-provisioning of memory in thread-safe memory management, the stack might be able to hold
more than 10 elements, but is guaranteed to be able to hold at least 10 elements). Then, we try
to pop an element from the empty stack, which has to fail. In the subsequent for-loop, we fill the
stack with the values 0..4. Afterwards, we pop five values from the stack into variable j. According
to the LIFO semantics, the values are popped in reverse order, i.e., we get the sequence 4...0, which
is checked by the assertion.

embb: :containers: :LockFreeStack<int> stack(10); // create

int i, j;
bool result = stack.TryPop(i); // fail_pop
assert(result == false);

for (i = 0; 1 <= 4; ++i) { // loop1
result = stack.TryPush(i); // push
assert(result == true);

}

for (i = 4; i >= 0; --i) { // loop2
result = stack.TryPop(j); // pop
assert(result == true && i == j); // assert

}
Listing 3: Stack - initialization, push, and pop

15

Queues

There are cwrently two FIFO (First-In, First-Out) queue implementations in EMB?2,
LockFreeMPMCQueue and WaitFreeSPSCQueue. The former can deal with multiple produc-
ers and multiple consumers (MPMC), whereas the latter is restricted to a single producer and a
single consumer (SPSC). The interfaces are the same for both queues. The Boolean return value
of the methods TryEnqueue and TryDequeue indicates success (false if the queue is full or empty,
respectively).

Listing 4 shows an example for the LockFreeMPMCQueue. First, we create a queue with element
type int and a capacity of (at least) 10 elements. Then, we try to dequeue an element from
the empty queue, which has to fail. In the subsequent for-loop, we fill the queue with the values
0..4. Afterwards, we dequeue five values from the queue into variable j. According to the FIFO
semantics, the values are dequeued in the same order as they were enqueued, i.e., we get the
sequence 0..4, which is checked by the assertion.

embb: :containers: :LockFreeMPMCQueue<int> queue(10); // create

int i, j;
bool result = queue.TryDequeue(i); // fail_pop
assert(result == false);

for (i = 0; i <= 4; ++i) { // loopi
result = queue.TryEnqueue(i); // push
assert(result == true);

}

for (i = 0; i <= 4; ++i) { // loop2
result = queue.TryDequeue(j); // pop
assert(result == true && i == j); // assert

}

Listing 4: Queue — initialization, enqueue, and dequeue

MTAPI

Leveraging the power of multicore processors requires to split computations into fine-grained tasks
that can be executed in parallel. Threads are usually too heavy-weight for that purpose, since
context switches consume a significant amount of time. Moreover, programming with threads is
complex and error-prone due to typical pitfalls such as race conditions and deadlocks. To solve these
problems, efficient task scheduling techniques have been developed which dynamically distribute
the available tasks among a fixed number of worker threads. To reduce overhead, there is usually
exactly one worker thread for each processor core.

While task schedulers are nowadays widely employed, especially in desktop and server applica-
tions, they are typically limited to a single operating system running on a homogeneous multicore
processor. System-wide task management in heterogeneous embedded systems must be realized ex-
plicitly with low-level communication mechanisms. MTAPI [1] addresses those issues by providing
an API which allows parallel embedded software to be designed in a straightforward way, covering
homogeneous and heterogeneous multicore architectures, as well as accelerators such as GPUs or
FPGAs. As a major advantage, it abstracts from the hardware details and lets software developers
focus on the application. Moreover, MTAPI takes into account typical requirements of embedded
systems such as real-time constraints and predictable memory consumption.

The remainder of this chapter is structured as follows: The next section explains the basic terms
and concepts of MTAPT as given in the specification [1]. The section on the MTAPI C Interface
describes the C API using a simple example taken from [1]. Finally, the section on the MTAPI
C++ Interface outlines the use of MTAPI in C++ applications. Note that the C++ interface is

16

provided by EMB? for convenience but it is not part of the standard. Readers who are familiar
with MTAPI or just want to get impression on how to use MTAPI in heterogeneous systems may
skip this chapter on go directly to Heterogeneous Systems or the Tutorial Application.

Foundations

Domains

An MTAPI system is composed of one or more MTAPI domains. An MTAPI domain is a unique
system global entity. Each MTAPI domain comprises a set of MTAPI nodes. An MTAPI node may
only belong to one MTAPI domain, while an MTAPI domain may contain one or more MTAPI
nodes. This allows the programmer to use MTAPI domains as namespaces for all kinds of IDs
(e.g., nodes, actions, queues, etc.).

Nodes

An MTAPI node is an independent unit of execution, such as a process, thread, thread pool, pro-
cessor, hardware accelerator, or instance of an operating system. A given MTAPI implementation
specifies what constitutes a node for that implementation.

The intent is to avoid a mixture of node definitions in the same implementation (or in different
domains within an implementation). If a node is defined as a unit of execution with its private
address space (like a process), then a core with a single unprotected address space OS is equivalent
to a node, whereas a core with a virtual memory OS can host multiple nodes.

On a shared memory SMP processor, a node can be defined as a subset of cores. A quad-core
processor, for example, could be divided into two nodes, one node representing three cores and one
node representing the fourth core reserved exclusively for certain tasks. The definition of a node
is flexible because this allows applications to be written in the most portable fashion supported by
the underlying hardware, while at the same time supporting more general-purpose multicore and
many-core devices.

The definition allows portability of software at the interface level (e.g., the functional interface
between nodes). However, the software implementation of a particular node cannot (and often
should not) necessarily be preserved across a multicore SoC product line (or across product lines
from different silicon providers) because a given node’s functionality may be provided in different
ways, depending on the chosen multicore SoC.

Tasks

A task represents the computation associated with the data to be processed and is executed
concurrently to the code starting it. The main API functions are mtapi_task_start() and
mtapi_task_wait(). The semantics are similar to the corresponding thread functions (e.g.,
pthread_create / pthread_join in POSIX Threads). The lifetime of a task is limited; it can be
started only once.

Actions

In order to cope with heterogeneous systems and computations implemented in hardware, a task
is not directly associated with an entry function as it is done in other task-parallel APIs. Instead,
it is associated with at least one action object representing the calculation. The association is
indirect: one or more actions implement a job, one job is associated with a task. If the action is
implemented in software, this is either a function on the same node (which can represent the same
processor or core) or a function implemented on a different node that does not share memory with
the core starting the task.

Starting a task consists of three steps:

1. Create the action object with a job ID (software-implemented actions only).

17

2. Obtain a job reference.
3. Start the task using the job reference.

Synchronization

The basic synchronization mechanism provided by MTAPIT is waiting for task completion. Calling
mtapi_task_wait() with a task handle blocks the current thread or task until the task referenced
by the handle has completed. Depending on the implementation, the calling thread can be used for
executing other tasks while waiting for the task to be completed. In order to synchronize with a set
of tasks, every task can be associated with a task group. The methods mtapi_group_wait_all()
and mtapi_group_wait_any() wait for a group of tasks or completion of any task in the group,
respectively.

Queues

Queues are used for guaranteeing sequential order of execution of tasks. A common use case is
packet processing in the communication domain: for every connection all packets must be processed
sequentially, while the packets of different connections can be processed in parallel to each other.

Sequential execution is accomplished by using a queue for every connection and queuing all packets
of one connection into the same queue. In some systems, queues are implemented in hardware,
otherwise MTAPI implements software queues. MTAPI is designed for handling thousands of
queues that are processed in parallel.

The procedure for setting up and using a queue is as follows:

1. Create the action object (software-implemented actions only).

2. Obtain a job reference.

3. Create a queue object and attach the job to the queue (software-implemented queues only).

4. Obtain a queue handle if the queue was created on a different node, or if the queue is
hardware-implemented.

5. Use the queue: enqueue the work using the queue.

Another important purpose of queues is that different queues can express different scheduling at-
tributes for the same job. For example, in contrast to order-preserving queues, non-order-preserving
queues can be used for load-balancing purposes between different computation nodes. In this case,
the queue must be associated with more than one action implementing the same task on different
nodes (i.e., different processors or cores implementing different instruction set architectures). If a
queue is configured this way, the order will not be preserved.

Attributes

Attributes are provided as a means to extend the API. Different implementations may define
and support additional attributes beyond those predefined by the API. To foster portability and
implementation flexibility, attributes are maintained in an opaque data object that may not be
examined directly by the user. Each object (e.g., task, action, queue) has an attributes data
object associated with it, and many attributes have a small set of predefined values that must be
supported by MTAPI implementations. The user may initialize, get, and set these attributes. For
default behavior, it is not necessary to call the initialize, get, and set attribute functions. However,
to get non-default behavior, the typical four-step process is:

1. Declare an attributes object of the mtapi_<object>_attributes_t data type.

2. mtapi_<object>attr_init(): Returns an attributes object with all attributes set to their
default values.

3. mtapi_<object>attr_set() (Repeat for all attributes to be set): Assigns a value to the
specified attribute of the specified attributes object.

4. mtapi_<object>_create(): Passes the attributes object modified in the previous step as a
parameter when creating the object.

18

At any time, the user can call mtapi_<object>_get_attribute() to query the value of an at-
tribute. After an object has been created, some objects allow to change attributes by calling
mtapi_<object>_set_attribute().

C Interface

The calculation of Fibonacci numbers is a simple example for a recursive algorithm that can easily
be parallelized. Listing 5 shows a sequential version:

int fib(int n) {
int x,y;
if (n < 2) {
return n;
} else {
X fib(n - 1);
y = fib(n - 2);
return x + y;
}
}

int fibonacci(int n) {
return fib(n);

}

void main(void) {
int n = 6;
int result = fibonacci(n);
printf("fib(%i) = %i\n", n, result);
}

Listing 5: Sequential program for computing Fibonacci numbers

This algorithm can be parallelized by spawning a task for one of the recursive calls (fib(n - 1),
for example). When doing this with MTAPI, an action function that represents fib(int n) is
needed. It has the following signature:

void fibonacciActionFunction(
const void* args,
mtapi_size_t arg_size,
void* result_buffer,
mtapi_size_t result_buffer_size,
const void* /*node local data*/,
mtapi_size_t /#node_local_data_size*/,
mtapi_task_context_t* task_context

) 1

Within the action function, the arguments should be checked, since the user might supply a buffer
that is too small:

/* check size of arguments (in this case we only expect one int
value) */

mtapi_status_t status;

if (arg_size != sizeof(int)) {
printf ("wrong size of arguments\n");
mtapi_context_status_set(task_context, MTAPI_ERR_ARG_SIZE,

&status);

MTAPI_CHECK_STATUS(status);
return;

}

19

/* cast arguments to the desired type */
int n = *(int*)args;

Here, mtapi_context_status_set () is used to report errors. The error code will be returned by
mtapi_task_wait (). Also, care has to be taken when using the result buffer. The user might not
want to use the result and supply a NULL pointer or accidentally a buffer that is too small:

/* 1f the caller is not interested in results, result_buffer may be
MTAPI_NULL. Of course, this depends on the application */
int* result = MTAPI_NULL;
if (result_buffer == MTAPI_NULL) {
mtapi_context_status_set(
task_context, MTAPI_ERR_RESULT_SIZE, &status);
MTAPI_CHECK_STATUS(status);

} else {
/* if results are expected by the caller, check result buffer
size... */
if (result_buffer_size == sizeof(int)) {
/* ... and cast the result buffer */
result = (int*)result_buffer;
} else {

printf("wrong size of result buffer\n");
mtapi_context_status_set(
task_context, MTAPI_ERR_RESULT_SIZE, &status);
MTAPI_CHECK_STATUS (status);
return;
¥
}

At this point, calculation of the result can commence. First, the terminating condition of the
recursion is checked:
if (n < 2) {
*result = n;
} else {

After that, the first part of the computation is launched as a task using mtapi_task_start () (the
action function is registered with the job FIBONACCI_JOB in the fibonacci() function and the
resulting handle is stored in the global variable mtapi_job_hndl_t fibonacciJob):

int a =n - 1;

int x;
mtapi_task_hndl_t task = mtapi_task_start(
MTAPI_TASK_ID_NONE, /* optional task ID */
fibonaccilJob, /* job */
(voidx*)&a, /* arguments passed to action
functions */
sizeof (int), /* size of arguments */
(voidx*)&x, /* result buffer */
sizeof (int), /* size of result buffer */
MTAPI_DEFAULT_TASK_ATTRIBUTES, /* task attributes */
MTAPI_GROUP_NONE, /* optional task group */
&status /* status out - parameter */
)3

MTAPI_CHECK_STATUS (status);
The second part can be executed directly:

int b =n - 2;
int y;

20

fibonacciActionFunction(
&b, sizeof (int),
&y, sizeof (int),
MTAPI_NULL, O,
task_context);

Then, completion of the MTAPI task has to be waited for by calling mtapi_task_wait():
mtapi_task_wait(task, MTAPI_INFINITE, &status);

Finally, the results can be added and written into the result buffer:

*result = x + y;

The fibonacci() function gets a bit more complicated now. The MTAPI runtime has to be
initialized first by (optionally) initializing node attributes and then calling mtapi_initialize():

mtapi_status_t status;

/* initialize node attributes to default values */
mtapi_node_attributes_t node_attr;
mtapi_nodeattr_init (&node_attr, &status);
MTAPI_CHECK_STATUS (status) ;

/* set node type to SMP */
mtapi_nodeattr_set(
&node_attr,
MTAPI_NODE_TYPE,
MTAPI_ATTRIBUTE_VALUE(MTAPI_NODE_TYPE_SMP),
MTAPI_ATTRIBUTE_POINTER_AS_VALUE,
&status) ;
MTAPI_CHECK_STATUS(status);

/* initialize the mnode */
mtapi_info_t info;
mtapi_initialize(

THIS_DOMAIN ID,

THIS_NODE_ID,

&node_attr,

&info,

&status) ;
MTAPI_CHECK_STATUS(status);

Then, the action function needs to be associated to a job. By calling mtapi_action_create(),
the action function is registered with the job FIBONACCI_JOB. The job handle of this job is stored
in the global variable mtapi_job_hndl_t fibonacciJob so that it can be accessed by the action
function later on:

/* create action */
mtapi_action_hndl_t fibonacciAction;
fibonacciAction = mtapi_action_create(

FIBONACCI_JOB, /* action ID, defined by the
application */

(fibonacciActionFunction), /* action function */

MTAPI_NULL, /* no shared data */

0, /* length of shared data */

MTAPI_DEFAULT_ACTION_ATTRIBUTES, /* action attributes */

&status /* status out - parameter */

)
MTAPI_CHECK_STATUS(status);

21

/* get job */

mtapi_task_hndl_t task;

fibonacciJob = mtapi_job_get (FIBONACCI_JOB, THIS_DOMAIN_ID, &status);
MTAPI_CHECK_STATUS (status);

Now that the action is registered with a job, the root task can be started with mtapi_task_start(:

/* start task */
int result;
task = mtapi_task_start(

MTAPI_TASK_ID NONE, /* optional task ID */

fibonacciJob, /* job */

(void*)&n, /* arguments passed to action
functions */

sizeof (int), /* size of arguments */

(voidx*)&result, /* result buffer */

sizeof (int), /* size of result buffer */

MTAPI_DEFAULT_TASK_ATTRIBUTES, /* task attributes */

MTAPI_GROUP_NONE, /* optional task group */

&status /* status out - parameter */

)3

MTAPI_CHECK_STATUS(status);

After everything is done, the action is deleted (mtapi_action_delete()) and the runtime is shut
down (mtapi_finalize()):

/* delete action */
mtapi_action_delete(fibonacciAction, 100, &status);
MTAPI CHECK_STATUS (status);

/* finalize the node */
mtapi_finalize(&status);
MTAPI_CHECK_STATUS(status);

C++ Interface

As mentioned previously, EMB? provides C++ wrappers for the MTAPI C interface. The full
interface provides functions for all MTAPI related tasks and even supports heterogeneous systems.
For ease of use, a simpler version for SMP systems is also provided.

Full Interface
The signature of an action function for the C++ interface is the same as for the C interface:

void fibonacciActionFunction(
const void* args,
mtapi_size_t arg_size,
void* result_buffer,
mtapi_size_t result_buffer_size,
const void* /*node_ local_data*/,
mtapi_size_t /#node_local_data_size*/,
mtapi_task_context_t* task_context

) {

Checking argument and result buffer sizes is the same as in the C example. Also, the terminating
condition of the recursion still needs to be checked:

if (n < 2) {
*result = n;
} else {

22

After that, the first part of the computation is launched as an MTAPI task using embb: :mtapi: :Node
(the action function is registered with the job FIBONACCI_JOB in the fibonacci() function and
the resulting handle is stored in the global variable embb: :mtapi::Job fibonaccilJob):
int a =n - 1;
int x;
embb: :mtapi::Task task = node.Start(fibonacciJob, &a, &x);
The second part can be executed directly:
int b = n - 2;
int y;
fibonacciActionFunction(
&b, sizeof(int),
&y, sizeof (int),
MTAPI_NULL, O,
task_context) ;

Then, completion of the MTAPI task has to be waited for using embb: :mtapi::Task: :Wait():

mtapi_status_t task_status = task.Wait(MTAPI_INFINITE);
if (task_status != MTAPI_SUCCESS) {
printf("task failed with error: ’%d\n\n", task_status);
exit (task_status);

}
Finally, the two parts can be added and written into the result buffer:
*result = x + y;

Note that there is no need to do error checking everywhere, since errors are reported as exceptions.
In this example there is only a single try/catch block in the main function:

EMBB_TRY {
int result = fibonacci(6);
std::cout << "result: " << result << std::endl;

} EMBB_CATCH(embb: :mtapi::StatusException &) {
std::cout << "MTAPI error occured." << std::endl;

3

The fibonacci() function is about the same as in the C version. The MTAPI runtime needs to
be initialized first:

/* initialize the node with default attributes */
embb: :mtapi::Node::Initialize (THIS_DOMAIN_ID, THIS_NODE_ID);
Then, the node instance can be fetched:

embb: :mtapi: :Node& node = embb::mtapi::Node::GetInstance();

After that, the action function needs to be associated to a job. By instantiating an
embb: :mtap: :Action object, the action function is registered with the job FIBONACCI_JOB.
The job is stored in the global variable embb::mtapi::Job fibonacciJob so that it can be
accessed by the action function later on:

/* create action */
embb: :mtapi::Action fibonacciAction = node.CreateAction(

FIBONACCI_JOB, /* action ID, defined by the
application */
(fibonacciActionFunction) /* action function */

)

/* get job */
fibonacciJob = node.GetJob(FIBONACCI_JOB, THIS_DOMAIN_ID);

23

::Start ()

Now that the action is registered and the job is initialized, the root task can be started:

int result;
embb: :mtapi::Task task = node.Start(fibonacciJob, &n, &result);

Again, the started task has to be waited for (using embb: :mtapi: :Task: :Wait()) before the result
can be returned.

The registered action will be unregistered when it goes out of scope. The runtime needs to be shut
down by calling:

embb: :mtapi::Node: :Finalize();

Simplified Interface for SMP actions
The signature of an action function for the simplified API (SMP systems) looks like this:

void simpleActionFunction(
TaskContext & task_context
) A
// something useful
}

The action function does not need to be registered with a job. Instead, a preregistered job is used
that expects an embb: :base: :Function<void, embb::mtapi::TaskContext &> object. There-
fore, a task can be scheduled directly using only the function above:

embb: :mtapi::Task task = node.Start(simpleActionFunction);

Plugins

The implementation of MTAPI provides an extension to allow for custom actions that are not
executed by the scheduler for software actions as described in the previous sections. Three plugins
are delivered with EMB?, one for supporting distributed systems through TCP /IP networking and
the other two for OpenCL or CUDA-capable GPUs.

Plugin API

The plugin API essentially consists of a single function contained in the mtapi_ext.h header file:
mtapi_ext_plugin_action_create()

This function is used to associate the plugin action with a specific job ID:

mtapi_action_hndl_t mtapi_ext_plugin_action_create(
MTAPI_IN mtapi_job_id_t job_id,
MTAPI_IN mtapi_ext_plugin_task_start_function_t task_start_function,
MTAPI_IN mtapi_ext_plugin_task_cancel_function_t task_cancel_function,
MTAPI_IN mtapi_ext_plugin_action_finalize_function_t action_finalize_function,
MTAPI_IN void* plugin_data,
MTAPI_IN void* node_local_data,
MTAPI_IN mtapi_size_t node_local_data_size,
MTAPI_IN mtapi_action_attributes_t* attributes,
MTAPI_OUT mtapi_status_t* status

);

The plugin action is implemented through three callbacks: task start, task cancel, and action
finalize.

task_start_function is called when the user requests execution of the plugin action by calling
mtapi_task_start() or mtapi_task_enqueue(). To those functions the fact that they operate

24

on a plugin action is transparent, they only require the handle of the job the action was registered
with.

task_cancel_function is called when the user requests cancelation of a task by calling
mtapi_task_cancel() or by calling mtapi_queue_disable() on a non-retaining queue.

action_finalize_function is called when the node is finalized and the action is deleted, or when
the user explicitly deletes the action by calling mtapi_action_delete().

For illustration, our example plugin will provide a no-op action. The task start callback in that
case looks like this:

void plugin_task_start(
MTAPI_IN mtapi_task_hndl_t task,
MTAPI_OUT mtapi_status_t* status) {
mtapi_status_t local_status = MTAPI_ERR_UNKNOWN;

// do we have a mode?
if (embb_mtapi_node_is_initialized()) {
// get the node instance
embb_mtapi_node_t * node = embb_mtapi_node_get_instance();

// is this a wvalid task?
if (embb_mtapi_task_pool_is_handle_valid(node->task_pool, task)) {
// get the tasks storage
embb_mtapi_task_t * local_task =
embb_mtapi_task_pool_get_storage_for_handle(node->task_pool, task);

// dispatch the task
plugin_task_schedule(local_task);

local_status MTAPI_SUCCESS;

}
else {
local_status = MTAPI_ERR_TASK_INVALID;
}
}
else {
local_status = MTAPI_ERR_NODE_NOTINIT;
}

mtapi_status_set(status, local_status);

}

The scheduling operation is responsible for bringing the task to execution. This might involve
instructing some hardware to execute the task or pushing the task into a queue for execution by a
separate worker thread. Here, however, the task is executed directly:

void plugin_task_schedule(embb_mtapi_task_t* local_task) {
// here the task might be dispatched to some hardware or separate thread

// mark the task as running
embb_mtapi_task_set_state(local_task, MTAPI_TASK_RUNNING);

// nothing to do to exzecute the no-op task

// just mark the task as done
embb_mtapi_task_set_state(local_task, MTAPI_TASK_COMPLETED);

25

Since the task gets executed right away, it cannot be canceled and the task cancel callback imple-
mentation is empty:

void plugin_task_cancel(
MTAPI_IN mtapi_task_hndl_t task,
MTAPI_OUT mtapi_status_t* status
) {
EMBB_UNUSED (task) ;
// nothing to cancel in this simple example
mtapi_status_set(status, MTAPI_SUCCESS);
}

The plugin action did not acquire any resources, so the action finalize callback is empty as well:

void plugin_action_finalize(
MTAPI_IN mtapi_action_hndl_t action,
MTAPI_OUT mtapi_status_t* status
) {
EMBB_UNUSED (action) ;
// nothing to do for tearing down the plugin action
mtapi_status_set(status, MTAPI_SUCCESS);
}

Now that the callbacks are in place, the action can be registered with a job after the node was
initialized using mtapi_initialize():

action = mtapi_ext_plugin_action_create(
PLUGIN_JOB_ID,
plugin_task_start,
plugin_task_cancel,
plugin_action_finalize,
MTAPI_NULL,
MTAPI_NULL,
0,
MTAPI_DEFAULT_ACTION_ATTRIBUTES,
&status) ;

The job handle can now be obtained the normal MTAPI way. The fact that there is a plugin
working behind the scenes is transparent:

job = mtapi_job_get (
PLUGIN_JOB_ID,
PLUGIN_DOMAIN_ID,
&status) ;

Using the job handle, tasks can be started like normal MTAPI tasks:

task = mtapi_task_start(
MTAPI_TASK_ID_NONE,
job,
MTAPI_NULL, O,
MTAPI_NULL, O,
MTAPI_DEFAULT_TASK_ATTRIBUTES,
MTAPI_GROUP_NONE,
&status) ;

This call will lead to the invocation of the plugin_task_start callback function, where the plugin

implementer is responsible for bringing the task to execution.

Network

26

The MTAPI network plugin provides a means to distribute tasks over a TCP/IP network. As an
example, the following vector addition action is used:

void AddVectorAction(
void const * arguments,
mtapi_size_t arguments_size,
void * result_buffer,
mtapi_size_t result_buffer_size,
void const * node_local_data,
mtapi_size_t node_local_data_size,
mtapi_task_context_t * context) {
EMBB_UNUSED (context) ;
EMBB_UNUSED (result_buffer_size);
EMBB_UNUSED (node_local_data_size);
int elements = static_cast<int>(arguments_size / sizeof (float) / 2);
float const * a = reinterpret_cast<float const *>(arguments) ;
float const * b = reinterpret_cast<float const *>(arguments)+elements;
float * ¢ = reinterpret_cast<float*>(result_buffer);
float const * d = reinterpret_cast<float const *>(node_local_data);
for (int ii = 0; ii < elements; ii++) {
clii] = alii] + b[ii] + d[0];
}
}

It adds two float vectors and a float from node local data, and writes the result into the result float
vector. In the example, code the vectors will hold kElements floats each.

To use the network plugin, its header file needs to be included first:
#include <embb/mtapi/c/mtapi_network.h>
After initializing the node using mtapi_initialize(), the plugin itself needs to be initialized:

mtapi_network_plugin_initialize("127.0.0.1", 12345, 5,
kElements * 4 *x 3 + 32, &status);

This will set up a listening socket on the localhost interface (127.0.0.1) at port 12345. The socket
will allow a maximum of five connections and has a maximum transfer buffer size of kElements
* 4 x 3 + 32. This buffer size needs to be large enough to fit at least the argument and result
buffer sizes at once. The example uses three vectors of kElements floats using kElements *
sizeof (float) * 3 bytes.

Since the example connects to itself on localhost, the “remote” action needs to be registered with
the NETWORK_REMOTE_JOB:

float node_remote = 1.0f;
local_action = mtapi_action_create(
NETWORK_REMOTE_JOB,
AddVectorAction,
&node_remote, sizeof(float),
MTAPI_DEFAULT_ACTION_ATTRIBUTES,
&status) ;

After that, the local network action is created that maps NETWORK_LOCAL_JOB to NETWORK_REMOTE_JOB
through the network:

network_action = mtapi_network_action_create(
NETWORK_DOMAIN,
NETWORK_LOCAL_JOB,
NETWORK_REMOTE_JOB,
"127.0.0.1", 12345,
&status) ;

27

Now, NETWORK_LOCAL_JOB can be used to execute tasks by simply calling mtapi_task_start().
Their parameters will be transmitted through a socket connection and are consumed by the network
plugin worker thread. The thread will start a task using the NETWORK_REMOTE_JOB. When this task
is finished, the results will be collected and sent back through the network. Again, the network
plugin thread will receive the results, provide them to the NETWORK_LOCAL_JOB task and mark that
task as finished.

When all work is done, the plugin needs to be finalized. This will stop the plugin worker thread
and close the sockets:

mtapi_network_plugin_finalize(&status);

After that, the node may be finalized by calling mtapi_finalize().

OpenCL

The MTAPI OpenCL plugin allows the user to leverage the computational power of an OpenCL
accelerator, if one is available in the system.

Let us reuse the vector addition example from the network plugin. However, the action function
is an OpenCL kernel now:

const char * kernel =

" _kernel void AddVector (\n"

__global void* arguments,\n"

int arguments_size,\n"

__global void* result_buffer,\n"

" int result_buffer_size,\n"

" __global void* node_local_data,\n"

" int node_local_data_size) {\n"

" int ii = get_global_id(0);\n"

int elements = arguments_size / sizeof (float) / 2;\n"
if (ii >= elements)"

" return;"

" __global floatx*
" __global floatx*
" __global floatx*
" __global floatx*
" clii] = al[ii] +
"\n";

The OpenCL plugin header file needs to be included first:

(__global float*)arguments;\n"

((__global float*)arguments) + elements;\n"
(__global float*)result_buffer;\n"

= (__global float*)node_local_data;\n"

[ii] + d[0];\n"

o Qa0 o
Il

#include <embb/mtapi/c/mtapi_opencl.h>

As with the network plugin, the OpenCL plugin needs to be initialized after the node has been
initialized:

mtapi_opencl_plugin_initialize(&status);

Then, the plugin action can be registered with the OPENCL_JOB:

float node_local = 1.0f;

action = mtapi_opencl_action_create(
OPENCL_JOB,
kernel, "AddVector", 32, 4,
&node_local, sizeof(float),
&status) ;

The kernel source and the name of the kernel to use (AddVector) need to be specified while creating
the action. The kernel will be compiled using the OpenCL runtime and the provided node local
data will be transferred to the accelerator memory. The local work size is the number of threads
that will share OpenCL local memory, in this case 32. The element size tells the OpenCL plugin

28

how many bytes a single element in the result buffer consumes, in this case 4, as a single result
is a single float. The OpenCL plugin will launch result_buffer_size/element_size OpenCL
threads to calculate the result.

Now, the OPENCL_JOB can be used like a normal MTAPIT job to start tasks.

After all work is done, the plugin needs to be finalized. This will free all memory on the accelerator
and delete the corresponding OpenCL context:

mtapi_opencl_plugin_finalize(&status);

CUDA
Similar to the OpenCL plugin, the CUDA plugin can be used to start tasks on an Nvidia GPU.
The vector addition example looks slightly different in CUDA:

extern "C" __global__ void AddVector(
void* arguments,
int arguments_size,
void* result_buffer,
int result_buffer_size,
void* node_local_data,
int node_local_data_size) {
int ii = blockDim.x * blockIdx.x + threadIdx.x;
int elements = arguments_size / sizeof (float) / 2;
if (ii >= elements)

return;
float* a = (float*)arguments;
float* b = ((float*)arguments) + elements;
float* ¢ = (float*)result_buffer;
float* d = (float*)node_local_data;

cliil = aliil + bl[ii] + d[0];
}

The kernel needs to be precompiled and will be transformed into a header file containing the
resulting binary in a char const * array named imageBytes.

As with the OpenCL plugin, the CUDA plugin header file needs to be included first:
#include <embb/mtapi/c/mtapi_cuda.h>

Then, the CUDA plugin needs to be initialized after the node has been initialized:
mtapi_cuda_plugin_initialize(&status);

Now, the plugin action can be registered with the CUDA_JOB:

float node_local = 1.0f;
action = mtapi_cuda_action_create(
CUDA_JOB,
reinterpret_cast<char const *>(imageBytes), "AddVector", 32, 4,
&node_local, sizeof(float),
&status) ;

The precompiled kernel binary and the name of the kernel to use need to be specified while
creating the action. The kernel and node local data provided are transferred to the accelerator
memory. The local work size is the number of threads that will share CUDA local memory, in this
case 32. The element size tells the CUDA plugin how many bytes a single element in the result
buffer consumes, in this case 4, as a single result is a single float. The CUDA plugin will launch
result_buffer_size/element_size CUDA threads to calculate the result.

Now, the CUDA_JOB can be used like a normal MTAPI job to start tasks.

29

After all work is done, the plugin needs to be finalized. This will free all memory on the accelerator
and delete the corresponding CUDA context:

mtapi_cuda_plugin_finalize(&status);

Heterogeneous Systems
Algorithms

All of the algorithms provided by EMB? can also be used on heterogeneous systems. This allows
to transparently offload work on different kinds of compute units, thus leveraging the available
hardware resources in an optimal way. In the following, we focus on the key concepts—for more
detailed information, please see the source code contained in the examples directory.

In addition to functions, functors or lambdas, the algorithms accept MTAPI job handles that
implement the intended functionality. The action functions will be given structures containing the
arguments and results according to the signatures used above. For the sake of simplicity, CPU
actions are used to simulate a heterogeneous system. The CPU actions are functions with the
following signature:

void Action(
const void* args,
mtapi_size_t args_size,
void* result_buffer,
mtapi_size_t result_buffer_size,
const void* node_local_data,
mtapi_size_t node_local_data_size,
mtapi_task_context_t* task_context
);

A node handle is retrieved and used by the following examples like this:

embb: :mtapi::Node & node = embb::mtapi::Node::GetInstance();

Invoke

First, we consider Invoke to start two jobs in parallel. For that purpose, we define two action
functions InvokeA and InvokeB that have no parameters and just increment a global value (a and
b, respectively). For InvokeA, we have:

static int a = 0;

static void InvokeA(
const voidx /*args+*/,
mtapi_size_t /*args_size*/,
voidx /*result_buffer*/,
mtapi_size_t /*result_buffer_ size*/,
const void* /#node local_data*/,
mtapi_size_t /#node_local_data_size*/,
mtapi_task_context_t* /*task context+/
) {

at++;

>

}

The actions are associated with the job IDs JOB_A and JOB_B. The job handles are retrieved as
follows:

static const mtapi_job_id_t JOB_INVOKE_A = 10;
embb: :mtapi::Job job_a = node.GetJob(JOB_INVOKE_A);

30

static const mtapi_job_id_t JOB_INVOKE_B = 11;
embb: :mtapi::Job job_b = node.GetJob(JOB_INVOKE_B);

After that, the jobs can be started:
embb: :algorithms: : Invoke(job_a, job_b);

The global variables a and b are now both set to 1.

Sorting

To use QuickSort, we need a comparison function. DescendingCompare has two arguments of
type int and one result of type bool. Since the function signature is fixed, we pack the arguments
into a struct:

typedef struct {
int lhs;
int rhs;

} InT;

The same holds for the result:

typedef struct {
bool out;
} OutT;

args needs to be casted to InT and result_buffer to OutT:

InT const * inputs = static_cast<InT const *>(args);
OutT * outputs = static_cast<OutT *>(result_buffer);

Now, the arguments can be accessed, compared and the result can be written:
outputs->out = inputs->lhs > inputs->rhs;

DescendingCompare is associated with the job ID JOB_COMPARE and the job handle can be retrieved
as follows:

static const mtapi_job_id_t JOB_COMPARE = 10;
embb: :mtapi::Job job_compare = node.GetJob(JOB_COMPARE) ;

Then, we prepare a vector with int’s to be sorted:

static const size_t kCountSize = 10;
std: :vector<int> vector (kCountSize);
for (size_t i = 0; i < kCountSize; i++) {
vector[i] = static_cast<int>(i + 2);
}
Finally, we call QuickSort
embb: :algorithms: :QuickSort (vector.begin(), vector.end(), job_compare);

and the int’s in the vector are now in descending order.

Counting

The predicate supplied to CountIf can be implemented by an action function CheckZero that
takes one argument of type int and returns one result of type bool. The argument is again packed
into a struct:

typedef struct {
int val;
} InT;

The result struct is the same as in the sorting example. Also, args and result_buffer need to
be casted to InT and OutT. Then, the body of CheckZero is simply:

31

outputs->out = inputs->val == 0;
After retrieving the job handle

static const mtapi_job_id_t JOB_CHECK_ZERO = 10;
embb: :mtapi::Job job_check_zero = node.GetJob(JOB_CHECK_ZERD) ;

we prepare a vector with int’s to count (if they are zero):

static const size_t kCountSize = 10;

std: :vector<int> vector (kCountSize);

for (size_t i = 0; i < kCountSize; i++) {
vector[i] = int(i) % 2;

}
Finally, we call CountIf

std::vector<int>::iterator::difference_type count =
embb: :algorithms: :CountIf (vector.begin(), vector.end(), job_check_zero);

which returns the number of zeros in the vector.

Foreach Loops

ForEach accepts functions taking a reference to an iterator as argument in order to work on the
referenced object. Consider, for example, an action function Double that doubles a given value. It
has one argument of type int and one result of type int. The argument struct is thus the same
as in the counting example. The result resides in a struct containing one int:

typedef struct {
int out;
} OutT;

args and result_buffer need to be casted to InT and OutT once more. The body of Double is
defined as follows:

outputs->out = inputs->val * 2;
After retrieving the job handle

static const mtapi_job_id_t JOB_DOUBLE = 10;
embb: :mtapi::Job job_double = node.GetJob(JOB_DOUBLE) ;

we can call ForEach with this handle:

embb: :algorithms: :ForEach(vector.begin(), vector.end(), job_double);

Reductions and Prefix Computations

Reduce and Scan use a reduction and a transformation function. The reduction function has
two arguments and one result that all have the same type. The transformation function has one
argument and one result with potentially different types. In our example, they are all of type
int. For simplicity, we reuse the Double action and JOB_DOUBLE from the previous example as our
transformation function. For the reduction function, we introduce an action Add with the following
simple body:

outputs->out = inputs->lhs + inputs->rhs;

The job handles are retrieved as follows:

static const mtapi_job_id_t JOB_DOUBLE = 10;

embb: :mtapi::Job job_double = node.GetJob(JOB_DOUBLE) ;

static const mtapi_job_id_t JOB_ADD = 11;
embb: :mtapi::Job job_add = node.GetJob(JOB_ADD) ;

32

Next, we create a vector of int’s:

static const size_t kCountSize = 10;

std: :vector<int> vector(kCountSize);

for (size_t i = 0; i < kCountSize; i++) {
vector[i] = int(i);

}
The elements of the vector can then be reduced by:

int result =
embb: :algorithms: :Reduce(vector.begin(), vector.end(), O,
job_add, job_double);

The prefix sum is computed similarly:

std: :vector<int> output(kCountSize) ;
embb: :algorithms: :Scan(vector.begin(), vector.end(), output.begin(), O,
job_add, job_double);

Dataflow

Dataflow networks can be used on heterogeneous systems as well. In addition to functions and
functors, dataflow sources, sinks, and processes accept MTAPI job handles implementing the in-
tended functionality. The action functions will be given structures containing the arguments and
results according to the signatures used previously. To simulate a heterogeneous system, CPU
actions with the following signature are used:

void Action(
const void* args,
mtapi_size_t args_size,
void* result_buffer,
mtapi_size_t result_buffer_size,
const void* node_local_data,
mtapi_size_t node_local_data_size,
mtapi_task_context_t* task_context

)

Suppose, for example, we want to double the integers from 0 to 9 and sum them up. For that
purpose, we define three action functions, one for a source called Generate, one for a process called
Double, and one for a sink called Accumulate. Each of them is associated with a different job.

Generate

The source function generates integers from 0 to 9. It receives no arguments and returns a bool
that indicates whether generating integers shall continue, and an int that represents the generated
value. The results are packed into a struct:

typedef struct {
bool more;
int out;

} OutT;

The result_buffer pointer needs to be casted to OutT:
OutT * outputs = static_cast<OutT *>(result_buffer);
Then, the body of the function is:

static int value = 0;
outputs->out = value;

33

outputs->more = value < 10;
value++;

Double

The process function expects and int and returns the double of its value. Both, the argument and
the result are packed into a struct:

typedef struct {
int val;
} InT;

typedef struct {
int out;
} OutT;

As usual, args as well as result_buffer need to be casted:
InT const * inputs = static_cast<InT const *>(args);
OutT * outputs = static_cast<OutT *>(result_buffer);
Finally, the actual calculation is simply:

outputs->out = inputs->val * 2;

Accumulate

The sink is supposed to add up all incoming values. It returns no result and expects a value of
type int which is packed into a struct:

typedef struct {
int val;
} InT;

After casting args to InT, the inputs can be accumulated:
InT const * inputs = static_cast<InT const *>(args);

accumulated_result += inputs->val;

Network

In the main function, we first retrieve the node handle:

embb: :mtapi::Node & node = embb::mtapi::Node::GetInstance();
Then, we obtain the job handles:

static const mtapi_job_id_t JOB_GENERATE = 10;

embb: :mtapi::Job job_generate = node.GetJob(JOB_GENERATE) ;

static const mtapi_job_id_t JOB_DOUBLE = 11;
embb: :mtapi::Job job_double = node.GetJob(JOB_DOUBLE) ;

static const mtapi_job_id_t JOB_ACCUMULATE = 12;

embb: :mtapi::Job job_accumulate = node.GetJob(JOB_ACCUMULATE) ;
After that, we define the network and its processes:

typedef embb::dataflow::Network Net;

Net net(4);

Net::Source<int> source(net, job_generate);

34

Net::ParallelProcess<Net::Inputs<int>, Net::Outputs<int> >
filter(net, job_double);

Net::Sink<int> sink(net, job_accumulate);
Finally, we connect the processes and run the network:
source >> filter >> sink;

net();

Tutorial Application

In the following, we create a video processing application that applies the concepts described in
the previous sections to a more complex problem. The application is supposed to read a video
file, apply some filters, and write the resulting output video to a file. For handling video files, we
are going to use FFmpeg. Details on how to build and run the application can be found in the
README.nd file in doc/tutorial/application.

The application consists of five parts, the main program, the filters, the input video handler, the
frame format converter, and the output video builder. Three of them relate to FFmpeg video
decoding and encoding. The input video handler opens a given video file and is used to read
consecutive frames from the stream until there are no more frames. The frame format converter is
used to convert from the source color format to RGB and vice versa, since the filtering is done in
RGB color space. The output video builder encodes the resulting image stream and writes it back
to a video file. For the sake of brevity, we will not cover these three parts in detail but focus on
parallelizing the filters as well as the whole pipeline. The filters come in three flavors: sequential,
parallel using the algorithms library, and as OpenCL kernels. The main application connects the
pipeline stages into a working whole.

Filters

The filters are essentially loops iterating over the pixels and applying some operation to them.
Here is a simple color to greyscale filter:

void applyBlackAndWhite (AVFramex frame) {
av_frame_make_writable(frame);

int const width = frame->width;
int const height = frame->height;

for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int p = mapToData(x, y, width);

int r = frame->datal[0] [p];
int g = frame->datal0][p + 1];
int b = frame->datal[0] [p + 2];

int mean = (r + g + b) / 3;
frame->datal[0] [p] = mean;
frame->datal[0] [p + 1] = mean;
frame->datal[0] [p + 2] = mean;
}
}
}

The other filters contained in doc\tutorial\application\src\filters.cc work similarly—feel
free to experiment with them. By default, the application “cartoonifies” the incoming video stream
(see function filter in main.cc).

35

Parallelizing the above filter is straightforward using the algorithms building block: We replace
the loops by a single call to ForLoop and compute the x and y pixel coordinates from the given
index:

void applyBlackAndWhiteParallel (AVFrame* frame) {
av_frame_make_writable(frame);

int const width = frame->width;
int const height = frame->height;

embb: :algorithms: :ForLoop(0, width*height, [&](int idx) {

int x = idx % width;

int y = idx / width;

int p = mapToData(x, y, width);
int r = frame->datal0] [p];

int g = frame->datal[0][p + 1];
int b = frame->datal[0][p + 2];

int mean = (r + g + b) / 3;
frame->datal[0] [p] = mean;
frame->datal[0] [p + 1] = mean;
frame->datal[0] [p + 2] = mean;
B
}

Now, the filter runs in parallel but the control flow of the whole application is still sequential which
limits scalability.

Control Flow

Applying video decoding, format conversion, filtering, another format conversion, and video encod-
ing to a sequence of frames can be implemented using the following loop:

while (readFromFile(frame)) {
convertToRGB(frame, convertedFrame);
filter(convertedFrame) ;
convertToOriginal (convertedFrame, originalFrame);
writeToFile(originalFrame) ;

}

The steps executed in the loop body can be seen as a pipeline which allows us to parallelize them
using dataflow networks. Each of the operations is wrapped into a source, a (parallel) process, or
a sink. The resulting objects are then connected to a network:

Network nw(8);
Network: :Source<AVFrame*> read(nw, embb::base::MakeFunction(readFromFile));

Network: :ParallelProcess<Network: :Inputs<AVFramex*>,
Network: :Outputs<AVFramex> >
rgb(nw, embb::base::MakeFunction(convertToRGB)) ;

Network: :ParallelProcess<Network: :Inputs<AVFramex>,
Network: :Outputs<AVFramex> >
original (nw, embb::base::MakeFunction(convertToOriginal));

Network: :ParallelProcess<Network: : Inputs<AVFramex*>,

Network: :Outputs<AVFramex> >
filter(nw, embb::base::MakeFunction(applyFilter));

36

Network: :Sink<AVFrame*> write(nw, embb::base::MakeFunction(writeToFile));
read >> rgb >> filter >> original >> write;

nw();

This way, scalability is significantly improved, as all parts now run in parallel.

Heterogeneous Systems

As discussed in the chapter on heterogeneous systems, some systems feature additional accelerators,
e.g. a GPU, to further improve processing speed. Using OpenCL (or CUDA), we can leverage
the power of such accelerators to speed up the filters. Let us consider the following OpenCL
implementation:

char const * mean_kernel =
" kernel void mean(\n"
__global void* arguments,\n"
int arguments_size,\n"
__global void* result_buffer,\n"
int result_buffer_size,\n"
" __global void* node_local_data,\n"
" int node_local_data_size) {\n"
" int idx = get_global_id(0);\n"
int elements = (arguments_size - sizeof(int) * 3) / 3;\n"
" if (idx >= elements)\n"
return;\n"
__global int * param = (__global int*)arguments;\n"
__global unsigned char * in_buffer ="
((__global unsigned char*)arguments) + sizeof (int) * 3;\n"
__global unsigned char * out_buffer ="
(__global unsigned char*)result_buffer;\n"
int width = param[0];\n"
" int height = param[1];\n"
" int size = param[2];\n"
" int size_1lt = (size % 2 !'=0) ? size / 2 : size / 2 - 1;\n"
int const size_rb = size / 2;\n"
" int x = idx % width;\n"
" int y = idx / width; \n"
" int close = 0;\n"
" int p = (x + y * width) * 3;\n"
int r = 0;\n"
" int g = 0;\n"
" int b = 0;\n"
" for (int k1 =y - size_lt; k1 <= y + size_rb; ki++) {\n"
" for (int k2 = x - size_lt; k2 <= x + size_rb; k2++) {\n"
! if (k1 >= 0 && k1 < height && k2 >= 0 &% k2 < width) {\n"
" close++;\n"
" int p2 = (k2 + k1 * width) * 3;\n"
" r += in_buffer[p2];\n"
" g += in_buffer[p2 + 1];\n"
" b += in_buffer[p2 + 2];\n"
" Hn"
" Ha"
" "
" out_buffer[p] = r / close;\n"

37

" out_buffer[p + 1] g / close;\n"
" out_buffer[p + 2] = b / close;\n"
||}\n|| ;

First, this kernel needs to be wrapped into an MTAPI action:

mtapi_opencl_action_create(JOB_MEAN, filters::mean_kernel,
"mean", 32, 3, &node_local, sizeof(int), &status);

if (status != MTAPI_SUCCESS) {
std::cout << "Could not create OpenCL action..." << std::endl;
mtapi_opencl_plugin_finalize(MTAPI_NULL);
embb: :mtapi: :Node: :Finalize();
return;

3

Then, the filter can be used like any job. Note, however, the additional cost for copying the frame
and the parameters of the filter into a single buffer:

args = new unsigned char[n_bytes + sizeof(int) * 4];
res = new unsigned char[n_bytes + sizeof(int) * 4];

size = n_bytes + sizeof(int) * 3;

param = reinterpret_cast<int*>(args);

data = args + sizeof(int) * 3;

param[0] = width;

param[1] = height;

param[2] 3;

memcpy (data, frame->datal[0], n_bytes);

job = node.GetJob(JOB_MEAN) ;

task = node.Start(MTAPI_TASK_ID_NONE, job.GetInternal(), args, size,
res + sizeof(int)*4, n_bytes, MTAPI_DEFAULT_TASK_ATTRIBUTES);

task.Wait();

When wrapped into a dataflow process, it can even be used as a part of the pipeline outlined
before:

Network: :ParallelProcess<Network: :Inputs<AVFramex*>,
Network: :Outputs<AVFramex> >
filter(nw, embb::base::MakeFunction(applyFilterOpenCL)) ;

Bibliography

[1] Multicore Task Management API (MTAPI) Specification V1.0, The Multicore Association,
March 2013.

38

	Embedded Multicore Building Blocks Tutorial
	Contents
	Introduction
	Overview
	Outline
	Functions, Functors, and Lambdas

	Algorithms
	Function Invocation
	Sorting
	Counting
	Foreach Loops
	Reductions
	Prefix Computations

	Dataflow
	Linear Pipelines
	Nonlinear Pipelines

	Containers
	Object Pools
	Stacks
	Queues

	MTAPI
	Foundations
	C Interface
	C++ Interface
	Plugins

	Heterogeneous Systems
	Algorithms
	Dataflow

	Tutorial Application
	Filters
	Control Flow

	Bibliography

