File ‹Tools/BNF/bnf_def.ML›
signature BNF_DEF =
sig
type bnf
type nonemptiness_witness = {I: int list, wit: term, prop: thm list}
val morph_bnf: morphism -> bnf -> bnf
val morph_bnf_defs: morphism -> bnf -> bnf
val permute_deads: (typ list -> typ list) -> bnf -> bnf
val transfer_bnf: theory -> bnf -> bnf
val bnf_of: Proof.context -> string -> bnf option
val bnf_of_global: theory -> string -> bnf option
val bnf_interpretation: string -> (bnf -> local_theory -> local_theory) -> theory -> theory
val interpret_bnf: (string -> bool) -> bnf -> local_theory -> local_theory
val register_bnf_raw: string -> bnf -> local_theory -> local_theory
val register_bnf: (string -> bool) -> string -> bnf -> local_theory -> local_theory
val name_of_bnf: bnf -> binding
val T_of_bnf: bnf -> typ
val live_of_bnf: bnf -> int
val lives_of_bnf: bnf -> typ list
val dead_of_bnf: bnf -> int
val deads_of_bnf: bnf -> typ list
val bd_of_bnf: bnf -> term
val nwits_of_bnf: bnf -> int
val mapN: string
val predN: string
val relN: string
val setN: string
val mk_setN: int -> string
val mk_witN: int -> string
val map_of_bnf: bnf -> term
val pred_of_bnf: bnf -> term
val rel_of_bnf: bnf -> term
val sets_of_bnf: bnf -> term list
val mk_T_of_bnf: typ list -> typ list -> bnf -> typ
val mk_bd_of_bnf: typ list -> typ list -> bnf -> term
val mk_map_of_bnf: typ list -> typ list -> typ list -> bnf -> term
val mk_pred_of_bnf: typ list -> typ list -> bnf -> term
val mk_rel_of_bnf: typ list -> typ list -> typ list -> bnf -> term
val mk_sets_of_bnf: typ list list -> typ list list -> bnf -> term list
val mk_wits_of_bnf: typ list list -> typ list list -> bnf -> (int list * term) list
val bd_Card_order_of_bnf: bnf -> thm
val bd_Cinfinite_of_bnf: bnf -> thm
val bd_Cnotzero_of_bnf: bnf -> thm
val bd_card_order_of_bnf: bnf -> thm
val bd_cinfinite_of_bnf: bnf -> thm
val bd_regularCard_of_bnf: bnf -> thm
val collect_set_map_of_bnf: bnf -> thm
val in_bd_of_bnf: bnf -> thm
val in_cong_of_bnf: bnf -> thm
val in_mono_of_bnf: bnf -> thm
val in_rel_of_bnf: bnf -> thm
val inj_map_of_bnf: bnf -> thm
val inj_map_strong_of_bnf: bnf -> thm
val le_rel_OO_of_bnf: bnf -> thm
val map_comp0_of_bnf: bnf -> thm
val map_comp_of_bnf: bnf -> thm
val map_cong0_of_bnf: bnf -> thm
val map_cong_of_bnf: bnf -> thm
val map_cong_pred_of_bnf: bnf -> thm
val map_cong_simp_of_bnf: bnf -> thm
val map_def_of_bnf: bnf -> thm
val map_id0_of_bnf: bnf -> thm
val map_id_of_bnf: bnf -> thm
val map_ident0_of_bnf: bnf -> thm
val map_ident_of_bnf: bnf -> thm
val map_transfer_of_bnf: bnf -> thm
val pred_cong0_of_bnf: bnf -> thm
val pred_cong_of_bnf: bnf -> thm
val pred_cong_simp_of_bnf: bnf -> thm
val pred_def_of_bnf: bnf -> thm
val pred_map_of_bnf: bnf -> thm
val pred_mono_strong0_of_bnf: bnf -> thm
val pred_mono_strong_of_bnf: bnf -> thm
val pred_mono_of_bnf: bnf -> thm
val pred_set_of_bnf: bnf -> thm
val pred_rel_of_bnf: bnf -> thm
val pred_transfer_of_bnf: bnf -> thm
val pred_True_of_bnf: bnf -> thm
val rel_Grp_of_bnf: bnf -> thm
val rel_OO_Grp_of_bnf: bnf -> thm
val rel_OO_of_bnf: bnf -> thm
val rel_cong0_of_bnf: bnf -> thm
val rel_cong_of_bnf: bnf -> thm
val rel_cong_simp_of_bnf: bnf -> thm
val rel_conversep_of_bnf: bnf -> thm
val rel_def_of_bnf: bnf -> thm
val rel_eq_of_bnf: bnf -> thm
val rel_flip_of_bnf: bnf -> thm
val rel_map_of_bnf: bnf -> thm list
val rel_mono_of_bnf: bnf -> thm
val rel_mono_strong0_of_bnf: bnf -> thm
val rel_mono_strong_of_bnf: bnf -> thm
val rel_eq_onp_of_bnf: bnf -> thm
val rel_refl_of_bnf: bnf -> thm
val rel_refl_strong_of_bnf: bnf -> thm
val rel_reflp_of_bnf: bnf -> thm
val rel_symp_of_bnf: bnf -> thm
val rel_transfer_of_bnf: bnf -> thm
val rel_transp_of_bnf: bnf -> thm
val set_bd_of_bnf: bnf -> thm list
val set_defs_of_bnf: bnf -> thm list
val set_map0_of_bnf: bnf -> thm list
val set_map_of_bnf: bnf -> thm list
val set_transfer_of_bnf: bnf -> thm list
val wit_thms_of_bnf: bnf -> thm list
val wit_thmss_of_bnf: bnf -> thm list list
val mk_map: int -> typ list -> typ list -> term -> term
val mk_pred: typ list -> term -> term
val mk_rel: int -> typ list -> typ list -> term -> term
val mk_set: typ list -> term -> term
val build_map: Proof.context -> typ list -> typ list -> (typ * typ -> term) -> typ * typ -> term
val build_rel: (string * (int * term)) list -> Proof.context -> typ list -> typ list ->
(typ * typ -> term) -> typ * typ -> term
val build_set: Proof.context -> typ -> typ -> term
val flatten_type_args_of_bnf: bnf -> 'a -> 'a list -> 'a list
val map_flattened_map_args: Proof.context -> string -> (term list -> 'a list) -> term list ->
'a list
val mk_witness: int list * term -> thm list -> nonemptiness_witness
val mk_wit_goals: term list -> term list -> term list -> int list * term -> term list
val minimize_wits: (''a list * 'b) list -> (''a list * 'b) list
val wits_of_bnf: bnf -> nonemptiness_witness list
val zip_axioms: 'a -> 'a -> 'a -> 'a list -> 'a -> 'a -> 'a -> 'a list -> 'a -> 'a -> 'a -> 'a list
datatype inline_policy = Dont_Inline | Hardly_Inline | Smart_Inline | Do_Inline
datatype fact_policy = Dont_Note | Note_Some | Note_All
val bnf_internals: bool Config.T
val bnf_timing: bool Config.T
val user_policy: fact_policy -> Proof.context -> fact_policy
val note_bnf_thms: fact_policy -> (binding -> binding) -> binding -> bnf -> local_theory ->
bnf * local_theory
val note_bnf_defs: bnf -> local_theory -> bnf * local_theory
val print_bnfs: Proof.context -> unit
val prepare_def: inline_policy -> (Proof.context -> fact_policy) -> bool ->
(binding -> binding) -> (Proof.context -> 'a -> typ) -> (Proof.context -> 'b -> term) ->
typ list option -> binding -> binding -> binding -> binding list ->
((((((binding * 'a) * 'b) * 'b list) * 'b) * 'b list) * 'b option) * 'b option ->
Proof.context ->
string * term list * ((Proof.context -> thm list -> tactic) option * term list list) *
((thm list -> thm list list) -> thm list list -> Proof.context -> bnf * local_theory) *
local_theory * thm list
val define_bnf_consts: inline_policy -> fact_policy -> bool -> typ list option ->
binding -> binding -> binding -> binding list ->
((((((binding * typ) * term) * term list) * term) * term list) * term option) * term option ->
local_theory ->
((typ list * typ list * typ list * typ) *
(term * term list * term * (int list * term) list * term * term) *
(thm * thm list * thm * thm list * thm * thm) *
((typ list -> typ list -> typ list -> term) *
(typ list -> typ list -> term -> term) *
(typ list -> typ list -> typ -> typ) *
(typ list -> typ list -> typ list -> term) *
(typ list -> typ list -> term) *
(typ list -> typ list -> typ list -> term) *
(typ list -> typ list -> term))) * local_theory
val bnf_def: inline_policy -> (Proof.context -> fact_policy) -> bool -> (binding -> binding) ->
(Proof.context -> tactic) list -> (Proof.context -> tactic) -> typ list option -> binding ->
binding -> binding -> binding list ->
((((((binding * typ) * term) * term list) * term) * term list) * term option) * term option ->
local_theory -> bnf * local_theory
val bnf_cmd: (((((((binding * string) * string) * string list) * string) * string list)
* string option) * string option) * (Proof.context -> Plugin_Name.filter) ->
Proof.context -> Proof.state
end;
structure BNF_Def : BNF_DEF =
struct
open BNF_Util
open BNF_Tactics
open BNF_Def_Tactics
val fundefcong_attrs = @{attributes [fundef_cong]};
val mono_attrs = @{attributes [mono]};
type axioms = {
map_id0: thm,
map_comp0: thm,
map_cong0: thm,
set_map0: thm list,
bd_card_order: thm,
bd_cinfinite: thm,
bd_regularCard: thm,
set_bd: thm list,
le_rel_OO: thm,
rel_OO_Grp: thm,
pred_set: thm
};
fun mk_axioms' ((((((((((id, comp), cong), map), c_o), cinf), creg), set_bd), le_rel_OO), rel), pred) =
{map_id0 = id, map_comp0 = comp, map_cong0 = cong, set_map0 = map, bd_card_order = c_o,
bd_cinfinite = cinf, bd_regularCard = creg, set_bd = set_bd, le_rel_OO = le_rel_OO, rel_OO_Grp = rel, pred_set = pred};
fun dest_cons [] = raise List.Empty
| dest_cons (x :: xs) = (x, xs);
fun mk_axioms n thms = thms
|> map the_single
|> dest_cons
||>> dest_cons
||>> dest_cons
||>> chop n
||>> dest_cons
||>> dest_cons
||>> dest_cons
||>> chop n
||>> dest_cons
||>> dest_cons
||> the_single
|> mk_axioms';
fun zip_axioms mid mcomp mcong smap bdco bdinf bdreg sbd le_rel_OO rel pred =
[mid, mcomp, mcong] @ smap @ [bdco, bdinf, bdreg] @ sbd @ [le_rel_OO, rel, pred];
fun map_axioms f {map_id0, map_comp0, map_cong0, set_map0, bd_card_order, bd_cinfinite,
bd_regularCard, set_bd, le_rel_OO, rel_OO_Grp, pred_set} =
{map_id0 = f map_id0,
map_comp0 = f map_comp0,
map_cong0 = f map_cong0,
set_map0 = map f set_map0,
bd_card_order = f bd_card_order,
bd_cinfinite = f bd_cinfinite,
bd_regularCard = f bd_regularCard,
set_bd = map f set_bd,
le_rel_OO = f le_rel_OO,
rel_OO_Grp = f rel_OO_Grp,
pred_set = f pred_set};
val morph_axioms = map_axioms o Morphism.thm;
type defs = {
map_def: thm,
set_defs: thm list,
rel_def: thm,
pred_def: thm
}
fun mk_defs map sets rel pred = {map_def = map, set_defs = sets, rel_def = rel, pred_def = pred};
fun map_defs f {map_def, set_defs, rel_def, pred_def} =
{map_def = f map_def, set_defs = map f set_defs, rel_def = f rel_def, pred_def = f pred_def};
val morph_defs = map_defs o Morphism.thm;
type facts = {
bd_Card_order: thm,
bd_Cinfinite: thm,
bd_Cnotzero: thm,
collect_set_map: thm lazy,
in_bd: thm lazy,
in_cong: thm lazy,
in_mono: thm lazy,
in_rel: thm lazy,
inj_map: thm lazy,
inj_map_strong: thm lazy,
map_comp: thm lazy,
map_cong: thm lazy,
map_cong_simp: thm lazy,
map_cong_pred: thm lazy,
map_id: thm lazy,
map_ident0: thm lazy,
map_ident: thm lazy,
map_ident_strong: thm lazy,
map_transfer: thm lazy,
rel_eq: thm lazy,
rel_flip: thm lazy,
set_map: thm lazy list,
rel_cong0: thm lazy,
rel_cong: thm lazy,
rel_cong_simp: thm lazy,
rel_map: thm list lazy,
rel_mono: thm lazy,
rel_mono_strong0: thm lazy,
rel_mono_strong: thm lazy,
set_transfer: thm list lazy,
rel_Grp: thm lazy,
rel_conversep: thm lazy,
rel_OO: thm lazy,
rel_refl: thm lazy,
rel_refl_strong: thm lazy,
rel_reflp: thm lazy,
rel_symp: thm lazy,
rel_transp: thm lazy,
rel_transfer: thm lazy,
rel_eq_onp: thm lazy,
pred_transfer: thm lazy,
pred_True: thm lazy,
pred_map: thm lazy,
pred_rel: thm lazy,
pred_mono_strong0: thm lazy,
pred_mono_strong: thm lazy,
pred_mono: thm lazy,
pred_cong0: thm lazy,
pred_cong: thm lazy,
pred_cong_simp: thm lazy
};
fun mk_facts bd_Card_order bd_Cinfinite bd_Cnotzero collect_set_map in_bd in_cong in_mono in_rel
inj_map inj_map_strong map_comp map_cong map_cong_simp map_cong_pred map_id map_ident0 map_ident
map_ident_strong map_transfer rel_eq rel_flip set_map rel_cong0 rel_cong rel_cong_simp rel_map
rel_mono rel_mono_strong0 rel_mono_strong set_transfer rel_Grp rel_conversep rel_OO rel_refl
rel_refl_strong rel_reflp rel_symp rel_transp rel_transfer rel_eq_onp pred_transfer pred_True
pred_map pred_rel pred_mono_strong0 pred_mono_strong pred_mono pred_cong0 pred_cong
pred_cong_simp = {
bd_Card_order = bd_Card_order,
bd_Cinfinite = bd_Cinfinite,
bd_Cnotzero = bd_Cnotzero,
collect_set_map = collect_set_map,
in_bd = in_bd,
in_cong = in_cong,
in_mono = in_mono,
in_rel = in_rel,
inj_map = inj_map,
inj_map_strong = inj_map_strong,
map_comp = map_comp,
map_cong = map_cong,
map_cong_simp = map_cong_simp,
map_cong_pred = map_cong_pred,
map_id = map_id,
map_ident0 = map_ident0,
map_ident = map_ident,
map_ident_strong = map_ident_strong,
map_transfer = map_transfer,
rel_eq = rel_eq,
rel_flip = rel_flip,
set_map = set_map,
rel_cong0 = rel_cong0,
rel_cong = rel_cong,
rel_cong_simp = rel_cong_simp,
rel_map = rel_map,
rel_mono = rel_mono,
rel_mono_strong0 = rel_mono_strong0,
rel_mono_strong = rel_mono_strong,
rel_transfer = rel_transfer,
rel_Grp = rel_Grp,
rel_conversep = rel_conversep,
rel_OO = rel_OO,
rel_refl = rel_refl,
rel_refl_strong = rel_refl_strong,
rel_reflp = rel_reflp,
rel_symp = rel_symp,
rel_transp = rel_transp,
set_transfer = set_transfer,
rel_eq_onp = rel_eq_onp,
pred_transfer = pred_transfer,
pred_True = pred_True,
pred_map = pred_map,
pred_rel = pred_rel,
pred_mono_strong0 = pred_mono_strong0,
pred_mono_strong = pred_mono_strong,
pred_mono = pred_mono,
pred_cong0 = pred_cong0,
pred_cong = pred_cong,
pred_cong_simp = pred_cong_simp};
fun map_facts f {
bd_Card_order,
bd_Cinfinite,
bd_Cnotzero,
collect_set_map,
in_bd,
in_cong,
in_mono,
in_rel,
inj_map,
inj_map_strong,
map_comp,
map_cong,
map_cong_simp,
map_cong_pred,
map_id,
map_ident0,
map_ident,
map_ident_strong,
map_transfer,
rel_eq,
rel_flip,
set_map,
rel_cong0,
rel_cong,
rel_cong_simp,
rel_map,
rel_mono,
rel_mono_strong0,
rel_mono_strong,
rel_transfer,
rel_Grp,
rel_conversep,
rel_OO,
rel_refl,
rel_refl_strong,
rel_reflp,
rel_symp,
rel_transp,
set_transfer,
rel_eq_onp,
pred_transfer,
pred_True,
pred_map,
pred_rel,
pred_mono_strong0,
pred_mono_strong,
pred_mono,
pred_cong0,
pred_cong,
pred_cong_simp} =
{bd_Card_order = f bd_Card_order,
bd_Cinfinite = f bd_Cinfinite,
bd_Cnotzero = f bd_Cnotzero,
collect_set_map = Lazy.map f collect_set_map,
in_bd = Lazy.map f in_bd,
in_cong = Lazy.map f in_cong,
in_mono = Lazy.map f in_mono,
in_rel = Lazy.map f in_rel,
inj_map = Lazy.map f inj_map,
inj_map_strong = Lazy.map f inj_map_strong,
map_comp = Lazy.map f map_comp,
map_cong = Lazy.map f map_cong,
map_cong_simp = Lazy.map f map_cong_simp,
map_cong_pred = Lazy.map f map_cong_pred,
map_id = Lazy.map f map_id,
map_ident0 = Lazy.map f map_ident0,
map_ident = Lazy.map f map_ident,
map_ident_strong = Lazy.map f map_ident_strong,
map_transfer = Lazy.map f map_transfer,
rel_eq = Lazy.map f rel_eq,
rel_flip = Lazy.map f rel_flip,
set_map = map (Lazy.map f) set_map,
rel_cong0 = Lazy.map f rel_cong0,
rel_cong = Lazy.map f rel_cong,
rel_cong_simp = Lazy.map f rel_cong_simp,
rel_map = Lazy.map (map f) rel_map,
rel_mono = Lazy.map f rel_mono,
rel_mono_strong0 = Lazy.map f rel_mono_strong0,
rel_mono_strong = Lazy.map f rel_mono_strong,
rel_transfer = Lazy.map f rel_transfer,
rel_Grp = Lazy.map f rel_Grp,
rel_conversep = Lazy.map f rel_conversep,
rel_OO = Lazy.map f rel_OO,
rel_refl = Lazy.map f rel_refl,
rel_refl_strong = Lazy.map f rel_refl_strong,
rel_reflp = Lazy.map f rel_reflp,
rel_symp = Lazy.map f rel_symp,
rel_transp = Lazy.map f rel_transp,
set_transfer = Lazy.map (map f) set_transfer,
rel_eq_onp = Lazy.map f rel_eq_onp,
pred_transfer = Lazy.map f pred_transfer,
pred_True = Lazy.map f pred_True,
pred_map = Lazy.map f pred_map,
pred_rel = Lazy.map f pred_rel,
pred_mono_strong0 = Lazy.map f pred_mono_strong0,
pred_mono_strong = Lazy.map f pred_mono_strong,
pred_mono = Lazy.map f pred_mono,
pred_cong0 = Lazy.map f pred_cong0,
pred_cong = Lazy.map f pred_cong,
pred_cong_simp = Lazy.map f pred_cong_simp};
val morph_facts = map_facts o Morphism.thm;
type nonemptiness_witness = {
I: int list,
wit: term,
prop: thm list
};
fun mk_witness (I, wit) prop = {I = I, wit = wit, prop = prop};
fun map_witness f g {I, wit, prop} = {I = I, wit = f wit, prop = map g prop};
fun morph_witness phi = map_witness (Morphism.term phi) (Morphism.thm phi);
datatype bnf = BNF of {
name: binding,
T: typ,
live: int,
lives: typ list,
lives': typ list,
dead: int,
deads: typ list,
map: term,
sets: term list,
bd: term,
axioms: axioms,
defs: defs,
facts: facts,
nwits: int,
wits: nonemptiness_witness list,
rel: term,
pred: term
};
fun rep_bnf (BNF bnf) = bnf;
val name_of_bnf = #name o rep_bnf;
val T_of_bnf = #T o rep_bnf;
fun mk_T_of_bnf Ds Ts bnf =
let val bnf_rep = rep_bnf bnf
in Term.typ_subst_atomic ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts)) (#T bnf_rep) end;
val live_of_bnf = #live o rep_bnf;
val lives_of_bnf = #lives o rep_bnf;
val dead_of_bnf = #dead o rep_bnf;
val deads_of_bnf = #deads o rep_bnf;
val axioms_of_bnf = #axioms o rep_bnf;
val facts_of_bnf = #facts o rep_bnf;
val nwits_of_bnf = #nwits o rep_bnf;
val wits_of_bnf = #wits o rep_bnf;
fun flatten_type_args_of_bnf bnf dead_x xs =
let
val Type (_, Ts) = T_of_bnf bnf;
val lives = lives_of_bnf bnf;
val deads = deads_of_bnf bnf;
in
permute_like_unique (op =) (deads @ lives) Ts (replicate (length deads) dead_x @ xs)
end;
val map_of_bnf = #map o rep_bnf;
val sets_of_bnf = #sets o rep_bnf;
fun mk_map_of_bnf Ds Ts Us bnf =
let val bnf_rep = rep_bnf bnf;
in
Term.subst_atomic_types
((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts) @ (#lives' bnf_rep ~~ Us)) (#map bnf_rep)
end;
fun mk_sets_of_bnf Dss Tss bnf =
let val bnf_rep = rep_bnf bnf;
in
map2 (fn (Ds, Ts) => Term.subst_atomic_types
((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts))) (Dss ~~ Tss) (#sets bnf_rep)
end;
val bd_of_bnf = #bd o rep_bnf;
fun mk_bd_of_bnf Ds Ts bnf =
let val bnf_rep = rep_bnf bnf;
in Term.subst_atomic_types ((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts)) (#bd bnf_rep) end;
fun mk_wits_of_bnf Dss Tss bnf =
let
val bnf_rep = rep_bnf bnf;
val wits = map (fn x => (#I x, #wit x)) (#wits bnf_rep);
in
map2 (fn (Ds, Ts) => apsnd (Term.subst_atomic_types
((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts)))) (Dss ~~ Tss) wits
end;
val rel_of_bnf = #rel o rep_bnf;
fun mk_rel_of_bnf Ds Ts Us bnf =
let val bnf_rep = rep_bnf bnf;
in
Term.subst_atomic_types
((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts) @ (#lives' bnf_rep ~~ Us)) (#rel bnf_rep)
end;
val pred_of_bnf = #pred o rep_bnf;
fun mk_pred_of_bnf Ds Ts bnf =
let val bnf_rep = rep_bnf bnf;
in
Term.subst_atomic_types
((#deads bnf_rep ~~ Ds) @ (#lives bnf_rep ~~ Ts)) (#pred bnf_rep)
end;
val bd_Card_order_of_bnf = #bd_Card_order o #facts o rep_bnf;
val bd_Cinfinite_of_bnf = #bd_Cinfinite o #facts o rep_bnf;
val bd_Cnotzero_of_bnf = #bd_Cnotzero o #facts o rep_bnf;
val bd_card_order_of_bnf = #bd_card_order o #axioms o rep_bnf;
val bd_cinfinite_of_bnf = #bd_cinfinite o #axioms o rep_bnf;
val bd_regularCard_of_bnf = #bd_regularCard o #axioms o rep_bnf;
val collect_set_map_of_bnf = Lazy.force o #collect_set_map o #facts o rep_bnf;
val in_bd_of_bnf = Lazy.force o #in_bd o #facts o rep_bnf;
val in_cong_of_bnf = Lazy.force o #in_cong o #facts o rep_bnf;
val in_mono_of_bnf = Lazy.force o #in_mono o #facts o rep_bnf;
val in_rel_of_bnf = Lazy.force o #in_rel o #facts o rep_bnf;
val inj_map_of_bnf = Lazy.force o #inj_map o #facts o rep_bnf;
val inj_map_strong_of_bnf = Lazy.force o #inj_map_strong o #facts o rep_bnf;
val le_rel_OO_of_bnf = #le_rel_OO o #axioms o rep_bnf;
val map_comp0_of_bnf = #map_comp0 o #axioms o rep_bnf;
val map_comp_of_bnf = Lazy.force o #map_comp o #facts o rep_bnf;
val map_cong0_of_bnf = #map_cong0 o #axioms o rep_bnf;
val map_cong_of_bnf = Lazy.force o #map_cong o #facts o rep_bnf;
val map_cong_pred_of_bnf = Lazy.force o #map_cong_pred o #facts o rep_bnf;
val map_cong_simp_of_bnf = Lazy.force o #map_cong_simp o #facts o rep_bnf;
val map_def_of_bnf = #map_def o #defs o rep_bnf;
val map_id0_of_bnf = #map_id0 o #axioms o rep_bnf;
val map_id_of_bnf = Lazy.force o #map_id o #facts o rep_bnf;
val map_ident0_of_bnf = Lazy.force o #map_ident0 o #facts o rep_bnf;
val map_ident_of_bnf = Lazy.force o #map_ident o #facts o rep_bnf;
val map_ident_strong_of_bnf = Lazy.force o #map_ident_strong o #facts o rep_bnf;
val map_transfer_of_bnf = Lazy.force o #map_transfer o #facts o rep_bnf;
val rel_eq_onp_of_bnf = Lazy.force o #rel_eq_onp o #facts o rep_bnf;
val pred_def_of_bnf = #pred_def o #defs o rep_bnf;
val pred_map_of_bnf = Lazy.force o #pred_map o #facts o rep_bnf;
val pred_mono_strong0_of_bnf = Lazy.force o #pred_mono_strong0 o #facts o rep_bnf;
val pred_mono_strong_of_bnf = Lazy.force o #pred_mono_strong o #facts o rep_bnf;
val pred_mono_of_bnf = Lazy.force o #pred_mono o #facts o rep_bnf;
val pred_cong0_of_bnf = Lazy.force o #pred_cong0 o #facts o rep_bnf;
val pred_cong_of_bnf = Lazy.force o #pred_cong o #facts o rep_bnf;
val pred_cong_simp_of_bnf = Lazy.force o #pred_cong_simp o #facts o rep_bnf;
val pred_rel_of_bnf = Lazy.force o #pred_rel o #facts o rep_bnf;
val pred_set_of_bnf = #pred_set o #axioms o rep_bnf;
val pred_transfer_of_bnf = Lazy.force o #pred_transfer o #facts o rep_bnf;
val pred_True_of_bnf = Lazy.force o #pred_True o #facts o rep_bnf;
val rel_Grp_of_bnf = Lazy.force o #rel_Grp o #facts o rep_bnf;
val rel_OO_Grp_of_bnf = #rel_OO_Grp o #axioms o rep_bnf;
val rel_OO_of_bnf = Lazy.force o #rel_OO o #facts o rep_bnf;
val rel_cong0_of_bnf = Lazy.force o #rel_cong0 o #facts o rep_bnf;
val rel_cong_of_bnf = Lazy.force o #rel_cong o #facts o rep_bnf;
val rel_cong_simp_of_bnf = Lazy.force o #rel_cong_simp o #facts o rep_bnf;
val rel_conversep_of_bnf = Lazy.force o #rel_conversep o #facts o rep_bnf;
val rel_def_of_bnf = #rel_def o #defs o rep_bnf;
val rel_eq_of_bnf = Lazy.force o #rel_eq o #facts o rep_bnf;
val rel_flip_of_bnf = Lazy.force o #rel_flip o #facts o rep_bnf;
val rel_map_of_bnf = Lazy.force o #rel_map o #facts o rep_bnf;
val rel_mono_of_bnf = Lazy.force o #rel_mono o #facts o rep_bnf;
val rel_mono_strong0_of_bnf = Lazy.force o #rel_mono_strong0 o #facts o rep_bnf;
val rel_mono_strong_of_bnf = Lazy.force o #rel_mono_strong o #facts o rep_bnf;
val rel_refl_of_bnf = Lazy.force o #rel_refl o #facts o rep_bnf;
val rel_refl_strong_of_bnf = Lazy.force o #rel_refl_strong o #facts o rep_bnf;
val rel_reflp_of_bnf = Lazy.force o #rel_reflp o #facts o rep_bnf;
val rel_symp_of_bnf = Lazy.force o #rel_symp o #facts o rep_bnf;
val rel_transfer_of_bnf = Lazy.force o #rel_transfer o #facts o rep_bnf;
val rel_transp_of_bnf = Lazy.force o #rel_transp o #facts o rep_bnf;
val set_bd_of_bnf = #set_bd o #axioms o rep_bnf;
val set_defs_of_bnf = #set_defs o #defs o rep_bnf;
val set_map0_of_bnf = #set_map0 o #axioms o rep_bnf;
val set_map_of_bnf = map Lazy.force o #set_map o #facts o rep_bnf;
val set_transfer_of_bnf = Lazy.force o #set_transfer o #facts o rep_bnf;
val wit_thms_of_bnf = maps #prop o wits_of_bnf;
val wit_thmss_of_bnf = map #prop o wits_of_bnf;
fun mk_bnf name T live lives lives' dead deads map sets bd axioms defs facts wits rel pred =
BNF {name = name, T = T,
live = live, lives = lives, lives' = lives', dead = dead, deads = deads,
map = map, sets = sets, bd = bd,
axioms = axioms, defs = defs, facts = facts,
nwits = length wits, wits = wits, rel = rel, pred = pred};
fun map_bnf f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17
(BNF {name = name, T = T, live = live, lives = lives, lives' = lives',
dead = dead, deads = deads, map = map, sets = sets, bd = bd,
axioms = axioms, defs = defs, facts = facts,
nwits = nwits, wits = wits, rel = rel, pred = pred}) =
BNF {name = f1 name, T = f2 T,
live = f3 live, lives = f4 lives, lives' = f5 lives', dead = f6 dead, deads = f7 deads,
map = f8 map, sets = f9 sets, bd = f10 bd,
axioms = f11 axioms, defs = f12 defs, facts = f13 facts,
nwits = f14 nwits, wits = f15 wits, rel = f16 rel, pred = f17 pred};
fun morph_bnf phi =
let
val Tphi = Morphism.typ phi;
val tphi = Morphism.term phi;
in
map_bnf (Morphism.binding phi) Tphi I (map Tphi) (map Tphi) I (map Tphi) tphi (map tphi) tphi
(morph_axioms phi) (morph_defs phi) (morph_facts phi) I (map (morph_witness phi)) tphi tphi
end;
fun morph_bnf_defs phi = map_bnf I I I I I I I I I I I (morph_defs phi) I I I I I;
fun permute_deads perm = map_bnf I I I I I I perm I I I I I I I I I I;
val transfer_bnf = morph_bnf o Morphism.transfer_morphism;
structure Data = Generic_Data
(
type T = bnf Symtab.table;
val empty = Symtab.empty;
fun merge data : T = Symtab.merge (K true) data;
);
fun bnf_of_generic context =
Option.map (transfer_bnf (Context.theory_of context)) o Symtab.lookup (Data.get context);
val bnf_of = bnf_of_generic o Context.Proof;
val bnf_of_global = bnf_of_generic o Context.Theory;
fun normalize_set insts instA set =
let
val (T, T') = dest_funT (fastype_of set);
val A = fst (Term.dest_TVar (HOLogic.dest_setT T'));
val params = Term.add_tvar_namesT T [];
in Term.subst_TVars ((A :: params) ~~ (instA :: insts)) set end;
fun normalize_rel ctxt instTs instA instB rel =
let
val thy = Proof_Context.theory_of ctxt;
val tyenv =
Sign.typ_match thy (fastype_of rel, Library.foldr (op -->) (instTs, mk_pred2T instA instB))
Vartab.empty;
in Envir.subst_term (tyenv, Vartab.empty) rel end
handle Type.TYPE_MATCH => error "Bad relator";
fun normalize_pred ctxt instTs instA pred =
let
val thy = Proof_Context.theory_of ctxt;
val tyenv =
Sign.typ_match thy (fastype_of pred, Library.foldr (op -->) (instTs, mk_pred1T instA))
Vartab.empty;
in Envir.subst_term (tyenv, Vartab.empty) pred end
handle Type.TYPE_MATCH => error "Bad predicator";
fun normalize_wit insts CA As wit =
let
fun strip_param (Ts, T as Type (\<^type_name>‹fun›, [T1, T2])) =
if Type.raw_instance (CA, T) then (Ts, T) else strip_param (T1 :: Ts, T2)
| strip_param x = x;
val (Ts, T) = strip_param ([], fastype_of wit);
val subst = Term.add_tvar_namesT T [] ~~ insts;
fun find y = find_index (fn x => x = y) As;
in
(map (find o Term.typ_subst_TVars subst) (rev Ts), Term.subst_TVars subst wit)
end;
fun minimize_wits wits =
let
fun minimize done [] = done
| minimize done ((I, wit) :: todo) =
if exists (fn (J, _) => subset (op =) (J, I)) (done @ todo)
then minimize done todo
else minimize ((I, wit) :: done) todo;
in minimize [] wits end;
fun mk_map live Ts Us t =
let val (Type (_, Ts0), Type (_, Us0)) = strip_typeN (live + 1) (fastype_of t) |>> List.last in
Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
end;
fun mk_pred Ts t =
let val Type (_, Ts0) = domain_type (body_fun_type (fastype_of t)) in
Term.subst_atomic_types (Ts0 ~~ Ts) t
end;
val mk_set = mk_pred;
fun mk_rel live Ts Us t =
let val [Type (_, Ts0), Type (_, Us0)] = binder_types (snd (strip_typeN live (fastype_of t))) in
Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
end;
fun build_map_or_rel mk const of_bnf dest pre_cst_table ctxt simple_Ts simple_Us build_simple =
let
fun build (TU as (T, U)) =
if exists (curry (op =) T) simple_Ts orelse exists (curry (op =) U) simple_Us then
build_simple TU
else if T = U andalso not (exists_subtype_in simple_Ts T) andalso
not (exists_subtype_in simple_Us U) then
const T
else
(case TU of
(Type (s, Ts), Type (s', Us)) =>
if s = s' then
let
fun recurse (live, cst0) =
let
val cst = mk live Ts Us cst0;
val TUs' = map dest (fst (strip_typeN live (fastype_of cst)));
in Term.list_comb (cst, map build TUs') end;
in
(case AList.lookup (op =) pre_cst_table s of
NONE =>
(case bnf_of ctxt s of
SOME bnf => recurse (live_of_bnf bnf, of_bnf bnf)
| NONE => build_simple TU)
| SOME entry => recurse entry)
end
else
build_simple TU
| _ => build_simple TU);
in build end;
val build_map = build_map_or_rel mk_map HOLogic.id_const map_of_bnf dest_funT
[(\<^type_name>‹set›, (1, \<^term>‹image›))];
val build_rel = build_map_or_rel mk_rel HOLogic.eq_const rel_of_bnf dest_pred2T o append
[(\<^type_name>‹set›, (1, \<^term>‹rel_set›)), (\<^type_name>‹fun›, (2, \<^term>‹rel_fun›))];
fun build_set ctxt A =
let
fun build T =
Abs (Name.uu, T,
if T = A then
HOLogic.mk_set A [Bound 0]
else
(case T of
Type (s, Ts) =>
let
val sets = map (mk_set Ts) (sets_of_bnf (the (bnf_of ctxt s)))
|> filter (exists_subtype_in [A] o range_type o fastype_of);
val set_apps = map (fn set => Term.betapply (set, Bound 0)) sets;
fun recurse set_app =
let val Type (\<^type_name>‹set›, [elemT]) = fastype_of set_app in
if elemT = A then set_app else mk_UNION set_app (build elemT)
end;
in
if null set_apps then HOLogic.mk_set A []
else Library.foldl1 mk_union (map recurse set_apps)
end
| _ => HOLogic.mk_set A []));
in build end;
fun map_flattened_map_args ctxt s map_args fs =
let
val flat_fs = flatten_type_args_of_bnf (the (bnf_of ctxt s)) Term.dummy fs;
val flat_fs' = map_args flat_fs;
in
permute_like_unique (op aconv) flat_fs fs flat_fs'
end;
val mapN = "map";
val setN = "set";
fun mk_setN i = setN ^ nonzero_string_of_int i;
val bdN = "bd";
val witN = "wit";
fun mk_witN i = witN ^ nonzero_string_of_int i;
val relN = "rel";
val predN = "pred";
val bd_Card_orderN = "bd_Card_order";
val bd_CinfiniteN = "bd_Cinfinite";
val bd_CnotzeroN = "bd_Cnotzero";
val bd_card_orderN = "bd_card_order";
val bd_cinfiniteN = "bd_cinfinite";
val bd_regularCardN = "bd_regularCard";
val collect_set_mapN = "collect_set_map";
val in_bdN = "in_bd";
val in_monoN = "in_mono";
val in_relN = "in_rel";
val inj_mapN = "inj_map";
val inj_map_strongN = "inj_map_strong";
val map_comp0N = "map_comp0";
val map_compN = "map_comp";
val map_cong0N = "map_cong0";
val map_congN = "map_cong";
val map_cong_simpN = "map_cong_simp";
val map_cong_predN = "map_cong_pred";
val map_id0N = "map_id0";
val map_idN = "map_id";
val map_identN = "map_ident";
val map_ident_strongN = "map_ident_strong";
val map_transferN = "map_transfer";
val pred_mono_strong0N = "pred_mono_strong0";
val pred_mono_strongN = "pred_mono_strong";
val pred_monoN = "pred_mono";
val pred_transferN = "pred_transfer";
val pred_TrueN = "pred_True";
val pred_mapN = "pred_map";
val pred_relN = "pred_rel";
val pred_setN = "pred_set";
val pred_congN = "pred_cong";
val pred_cong_simpN = "pred_cong_simp";
val rel_GrpN = "rel_Grp";
val rel_comppN = "rel_compp";
val rel_compp_GrpN = "rel_compp_Grp";
val rel_congN = "rel_cong";
val rel_cong_simpN = "rel_cong_simp";
val rel_conversepN = "rel_conversep";
val rel_eqN = "rel_eq";
val rel_eq_onpN = "rel_eq_onp";
val rel_flipN = "rel_flip";
val rel_mapN = "rel_map";
val rel_monoN = "rel_mono";
val rel_mono_strong0N = "rel_mono_strong0";
val rel_mono_strongN = "rel_mono_strong";
val rel_reflN = "rel_refl";
val rel_refl_strongN = "rel_refl_strong";
val rel_reflpN = "rel_reflp";
val rel_sympN = "rel_symp";
val rel_transferN = "rel_transfer";
val rel_transpN = "rel_transp";
val set_bdN = "set_bd";
val set_map0N = "set_map0";
val set_mapN = "set_map";
val set_transferN = "set_transfer";
datatype inline_policy = Dont_Inline | Hardly_Inline | Smart_Inline | Do_Inline;
datatype fact_policy = Dont_Note | Note_Some | Note_All;
val bnf_internals = Attrib.setup_config_bool \<^binding>‹bnf_internals› (K false);
val bnf_timing = Attrib.setup_config_bool \<^binding>‹bnf_timing› (K false);
fun user_policy policy ctxt = if Config.get ctxt bnf_internals then Note_All else policy;
val smart_max_inline_term_size = 25;
fun note_bnf_thms fact_policy qualify0 bnf_b bnf lthy =
let
val axioms = axioms_of_bnf bnf;
val facts = facts_of_bnf bnf;
val wits = wits_of_bnf bnf;
val qualify =
let val qs = Binding.path_of bnf_b;
in fold_rev (fn (s, mand) => Binding.qualify mand s) qs #> qualify0 end;
fun note_if_note_all (noted0, lthy0) =
let
val witNs = if length wits = 1 then [witN] else map mk_witN (1 upto length wits);
val notes =
[(bd_Card_orderN, [#bd_Card_order facts]),
(bd_CinfiniteN, [#bd_Cinfinite facts]),
(bd_CnotzeroN, [#bd_Cnotzero facts]),
(collect_set_mapN, [Lazy.force (#collect_set_map facts)]),
(in_bdN, [Lazy.force (#in_bd facts)]),
(in_monoN, [Lazy.force (#in_mono facts)]),
(map_comp0N, [#map_comp0 axioms]),
(rel_mono_strong0N, [Lazy.force (#rel_mono_strong0 facts)]),
(pred_mono_strong0N, [Lazy.force (#pred_mono_strong0 facts)]),
(set_map0N, #set_map0 axioms)] @
(witNs ~~ wit_thmss_of_bnf bnf)
|> map (fn (thmN, thms) =>
((qualify (Binding.qualify true (Binding.name_of bnf_b) (Binding.name thmN)), []),
[(thms, [])]));
in
Local_Theory.notes notes lthy0 |>> append noted0
end;
fun note_unless_dont_note (noted0, lthy0) =
let
val notes =
[(in_relN, [Lazy.force (#in_rel facts)], []),
(inj_mapN, [Lazy.force (#inj_map facts)], []),
(inj_map_strongN, [Lazy.force (#inj_map_strong facts)], []),
(map_compN, [Lazy.force (#map_comp facts)], []),
(map_cong0N, [#map_cong0 axioms], []),
(map_congN, [Lazy.force (#map_cong facts)], fundefcong_attrs),
(map_cong_simpN, [Lazy.force (#map_cong_simp facts)], []),
(map_cong_predN, [Lazy.force (#map_cong_pred facts)], []),
(map_idN, [Lazy.force (#map_id facts)], []),
(map_id0N, [#map_id0 axioms], []),
(map_transferN, [Lazy.force (#map_transfer facts)], []),
(map_identN, [Lazy.force (#map_ident facts)], []),
(map_ident_strongN, [Lazy.force (#map_ident_strong facts)], []),
(pred_monoN, [Lazy.force (#pred_mono facts)], mono_attrs),
(pred_mono_strongN, [Lazy.force (#pred_mono_strong facts)], []),
(pred_congN, [Lazy.force (#pred_cong facts)], fundefcong_attrs),
(pred_cong_simpN, [Lazy.force (#pred_cong_simp facts)], []),
(pred_mapN, [Lazy.force (#pred_map facts)], []),
(pred_relN, [Lazy.force (#pred_rel facts)], []),
(pred_transferN, [Lazy.force (#pred_transfer facts)], []),
(pred_TrueN, [Lazy.force (#pred_True facts)], []),
(pred_setN, [#pred_set axioms], []),
(rel_comppN, [Lazy.force (#rel_OO facts)], []),
(rel_compp_GrpN, no_refl [#rel_OO_Grp axioms], []),
(rel_conversepN, [Lazy.force (#rel_conversep facts)], []),
(rel_eqN, [Lazy.force (#rel_eq facts)], []),
(rel_eq_onpN, [Lazy.force (#rel_eq_onp facts)], []),
(rel_flipN, [Lazy.force (#rel_flip facts)], []),
(rel_GrpN, [Lazy.force (#rel_Grp facts)], []),
(rel_mapN, Lazy.force (#rel_map facts), []),
(rel_monoN, [Lazy.force (#rel_mono facts)], mono_attrs),
(rel_mono_strongN, [Lazy.force (#rel_mono_strong facts)], []),
(rel_congN, [Lazy.force (#rel_cong facts)], fundefcong_attrs),
(rel_cong_simpN, [Lazy.force (#rel_cong_simp facts)], []),
(rel_reflN, [Lazy.force (#rel_refl facts)], []),
(rel_refl_strongN, [Lazy.force (#rel_refl_strong facts)], []),
(rel_reflpN, [Lazy.force (#rel_reflp facts)], []),
(rel_sympN, [Lazy.force (#rel_symp facts)], []),
(rel_transpN, [Lazy.force (#rel_transp facts)], []),
(rel_transferN, [Lazy.force (#rel_transfer facts)], []),
(set_mapN, map Lazy.force (#set_map facts), []),
(set_transferN, Lazy.force (#set_transfer facts), []),
(set_bdN, #set_bd axioms, []),
(bd_card_orderN, [#bd_card_order axioms], []),
(bd_cinfiniteN, [#bd_cinfinite axioms], []),
(bd_regularCardN, [#bd_regularCard axioms], [])]
|> filter_out (null o #2)
|> map (fn (thmN, thms, attrs) =>
((qualify (Binding.qualify true (Binding.name_of bnf_b) (Binding.name thmN)), attrs),
[(thms, [])]));
in
Local_Theory.notes notes lthy0 |>> append noted0
end;
in
([], lthy)
|> fact_policy = Note_All ? note_if_note_all
|> fact_policy <> Dont_Note ? note_unless_dont_note
|>> (fn [] => bnf | noted => morph_bnf (substitute_noted_thm noted) bnf)
end;
fun note_bnf_defs bnf lthy =
let
fun mk_def_binding cst_of =
Thm.def_binding (Binding.qualified_name (dest_Const (cst_of bnf) |> fst));
val notes =
[(mk_def_binding map_of_bnf, map_def_of_bnf bnf),
(mk_def_binding rel_of_bnf, rel_def_of_bnf bnf),
(mk_def_binding pred_of_bnf, pred_def_of_bnf bnf)] @
@{map 2} (pair o mk_def_binding o K) (sets_of_bnf bnf) (set_defs_of_bnf bnf)
|> map (fn (b, thm) => ((b, []), [([thm], [])]));
in
lthy
|> Local_Theory.notes notes
|>> (fn noted => morph_bnf (substitute_noted_thm noted) bnf)
end;
fun mk_wit_goals zs bs sets (I, wit) =
let
val xs = map (nth bs) I;
fun wit_goal i =
let
val z = nth zs i;
val set_wit = nth sets i $ Term.list_comb (wit, xs);
val concl = HOLogic.mk_Trueprop
(if member (op =) I i then HOLogic.mk_eq (z, nth bs i) else \<^term>‹False›);
in
fold_rev Logic.all (z :: xs) (Logic.mk_implies (mk_Trueprop_mem (z, set_wit), concl))
end;
in
map wit_goal (0 upto length sets - 1)
end;
fun define_bnf_consts const_policy fact_policy internal Ds_opt map_b rel_b pred_b set_bs
(((((((bnf_b, T_rhs), map_rhs), set_rhss), bd_rhs), wit_rhss), rel_rhs_opt), pred_rhs_opt)
no_defs_lthy =
let
val live = length set_rhss;
val def_qualify = Binding.qualify false (Binding.name_of bnf_b);
fun mk_prefix_binding pre = Binding.prefix_name (pre ^ "_") bnf_b;
fun maybe_define user_specified (b, rhs) lthy =
let
val inline =
(user_specified orelse fact_policy = Dont_Note) andalso
(case const_policy of
Dont_Inline => false
| Hardly_Inline => Term.is_Free rhs orelse Term.is_Const rhs
| Smart_Inline => Term.size_of_term rhs <= smart_max_inline_term_size
| Do_Inline => true);
in
if inline then
((rhs, Drule.reflexive_thm), lthy)
else
let val b = b () in
apfst (apsnd snd)
((if internal then Local_Theory.define_internal else Local_Theory.define)
((b, NoSyn), ((Binding.concealed (Thm.def_binding b), []), rhs)) lthy)
end
end;
val map_bind_def =
(fn () => def_qualify (if Binding.is_empty map_b then mk_prefix_binding mapN else map_b),
map_rhs);
val set_binds_defs =
let
fun set_name i get_b =
(case try (nth set_bs) (i - 1) of
SOME b => if Binding.is_empty b then get_b else K b
| NONE => get_b) #> def_qualify;
val bs = if live = 1 then [set_name 1 (fn () => mk_prefix_binding setN)]
else map (fn i => set_name i (fn () => mk_prefix_binding (mk_setN i))) (1 upto live);
in bs ~~ set_rhss end;
val bd_bind_def = (fn () => def_qualify (mk_prefix_binding bdN), bd_rhs);
val (((bnf_map_term, raw_map_def),
(bnf_set_terms, raw_set_defs)),
(lthy, lthy_old)) =
no_defs_lthy
|> (snd o Local_Theory.begin_nested)
|> maybe_define true map_bind_def
||>> apfst split_list o fold_map (maybe_define true) set_binds_defs
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val ((bnf_bd_term, raw_bd_def), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> maybe_define true bd_bind_def
||> `Local_Theory.end_nested;
val phi' = Proof_Context.export_morphism lthy_old lthy;
val bnf_map_def = Morphism.thm phi raw_map_def;
val bnf_set_defs = map (Morphism.thm phi) raw_set_defs;
val bnf_bd_def = Morphism.thm phi' raw_bd_def;
val bnf_map = Morphism.term phi bnf_map_term;
val ((alphas, betas), (Calpha, _)) =
fastype_of bnf_map
|> strip_typeN live
|>> map_split dest_funT
||> dest_funT
handle TYPE _ => error "Bad map function";
val Calpha_params = map TVar (Term.add_tvarsT Calpha []);
val bnf_T = Morphism.typ phi T_rhs;
val bad_args = Term.add_tfreesT bnf_T [];
val _ = null bad_args orelse error ("Locally fixed type arguments " ^
commas_quote (map (Syntax.string_of_typ no_defs_lthy o TFree) bad_args));
val bnf_sets =
map2 (normalize_set Calpha_params) alphas (map (Morphism.term phi) bnf_set_terms);
val bnf_bd =
Term.subst_TVars (Term.add_tvar_namesT bnf_T [] ~~ Calpha_params)
(Morphism.term phi' bnf_bd_term);
val deads = (case Ds_opt of
NONE => subtract (op =) (alphas @ betas) (map TVar (Term.add_tvars bnf_map []))
| SOME Ds => map (Morphism.typ phi) Ds);
fun mk_bnf_map Ds As' Bs' =
Term.subst_atomic_types ((deads ~~ Ds) @ (alphas ~~ As') @ (betas ~~ Bs')) bnf_map;
fun mk_bnf_t Ds As' = Term.subst_atomic_types ((deads ~~ Ds) @ (alphas ~~ As'));
fun mk_bnf_T Ds As' = Term.typ_subst_atomic ((deads ~~ Ds) @ (alphas ~~ As'));
val (((As, Bs), unsorted_Ds), names_lthy) = lthy
|> mk_TFrees live
||>> mk_TFrees live
||>> mk_TFrees (length deads);
val Ds = map2 (resort_tfree_or_tvar o Type.sort_of_atyp) deads unsorted_Ds;
val RTs = map2 (curry HOLogic.mk_prodT) As Bs;
val pred2RTs = map2 mk_pred2T As Bs;
val (Rs, Rs') = names_lthy |> mk_Frees' "R" pred2RTs |> fst;
val CA = mk_bnf_T Ds As Calpha;
val CR = mk_bnf_T Ds RTs Calpha;
val setRs =
@{map 3} (fn R => fn T => fn U =>
HOLogic.Collect_const (HOLogic.mk_prodT (T, U)) $ HOLogic.mk_case_prod R) Rs As Bs;
val rel_spec =
let
val map1 = Term.list_comb (mk_bnf_map Ds RTs As, map fst_const RTs);
val map2 = Term.list_comb (mk_bnf_map Ds RTs Bs, map snd_const RTs);
val bnf_in = mk_in setRs (map (mk_bnf_t Ds RTs) bnf_sets) CR;
in
mk_rel_compp (mk_conversep (mk_Grp bnf_in map1), mk_Grp bnf_in map2)
|> fold_rev Term.absfree Rs'
end;
val rel_rhs = the_default rel_spec rel_rhs_opt;
val rel_bind_def =
(fn () => def_qualify (if Binding.is_empty rel_b then mk_prefix_binding relN else rel_b),
rel_rhs);
val pred_spec =
if live = 0 then Term.absdummy (mk_bnf_T Ds As Calpha) \<^term>‹True› else
let
val sets = map (mk_bnf_t Ds As) bnf_sets;
val argTs = map mk_pred1T As;
val T = mk_bnf_T Ds As Calpha;
val ((Ps, Ps'), x) = lthy
|> mk_Frees' "P" argTs
||>> yield_singleton (mk_Frees "x") T
|> fst;
val conjs = map2 (fn set => fn P => mk_Ball (set $ x) P) sets Ps;
in
fold_rev Term.absfree Ps'
(Term.absfree (dest_Free x) (Library.foldr1 HOLogic.mk_conj conjs))
end;
val pred_rhs = the_default pred_spec pred_rhs_opt;
val pred_bind_def =
(fn () => def_qualify (if Binding.is_empty pred_b then mk_prefix_binding predN else pred_b),
pred_rhs);
val wit_rhss =
if null wit_rhss then
[fold_rev Term.absdummy As (Term.list_comb (mk_bnf_map Ds As As,
map2 (fn T => fn i => Term.absdummy T (Bound i)) As (live downto 1)) $
Const (\<^const_name>‹undefined›, CA))]
else wit_rhss;
val nwits = length wit_rhss;
val wit_binds_defs =
let
val bs = if nwits = 1 then [fn () => def_qualify (mk_prefix_binding witN)]
else map (fn i => fn () => def_qualify (mk_prefix_binding (mk_witN i))) (1 upto nwits);
in bs ~~ wit_rhss end;
val ((((bnf_rel_term, raw_rel_def), (bnf_pred_term, raw_pred_def)),
(bnf_wit_terms, raw_wit_defs)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> maybe_define (is_some rel_rhs_opt) rel_bind_def
||>> maybe_define (is_some pred_rhs_opt) pred_bind_def
||>> apfst split_list o fold_map (maybe_define (not (null wit_rhss))) wit_binds_defs
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val bnf_rel_def = Morphism.thm phi raw_rel_def;
val bnf_rel = Morphism.term phi bnf_rel_term;
fun mk_bnf_rel Ds As' Bs' =
normalize_rel lthy (map2 mk_pred2T As' Bs') (mk_bnf_T Ds As' Calpha) (mk_bnf_T Ds Bs' Calpha)
bnf_rel;
val bnf_pred_def = Morphism.thm phi raw_pred_def;
val bnf_pred = Morphism.term phi bnf_pred_term;
fun mk_bnf_pred Ds As' =
normalize_pred lthy (map mk_pred1T As') (mk_bnf_T Ds As' Calpha) bnf_pred;
val bnf_wit_defs = map (Morphism.thm phi) raw_wit_defs;
val bnf_wits =
map (normalize_wit Calpha_params Calpha alphas o Morphism.term phi) bnf_wit_terms;
fun mk_rel_spec Ds' As' Bs' =
Term.subst_atomic_types ((Ds ~~ Ds') @ (As ~~ As') @ (Bs ~~ Bs')) rel_spec;
fun mk_pred_spec Ds' As' =
Term.subst_atomic_types ((Ds ~~ Ds') @ (As ~~ As')) pred_spec;
in
(((alphas, betas, deads, Calpha),
(bnf_map, bnf_sets, bnf_bd, bnf_wits, bnf_rel, bnf_pred),
(bnf_map_def, bnf_set_defs, bnf_bd_def, bnf_wit_defs, bnf_rel_def, bnf_pred_def),
(mk_bnf_map, mk_bnf_t, mk_bnf_T, mk_bnf_rel, mk_bnf_pred, mk_rel_spec, mk_pred_spec)), lthy)
end;
fun prepare_def const_policy mk_fact_policy internal qualify prep_typ prep_term Ds_opt map_b rel_b
pred_b set_bs (((((((raw_bnf_b, raw_bnf_T), raw_map), raw_sets), raw_bd), raw_wits), raw_rel_opt),
raw_pred_opt) no_defs_lthy =
let
val fact_policy = mk_fact_policy no_defs_lthy;
val bnf_b = qualify raw_bnf_b;
val live = length raw_sets;
val T_rhs = prep_typ no_defs_lthy raw_bnf_T;
val map_rhs = prep_term no_defs_lthy raw_map;
val set_rhss = map (prep_term no_defs_lthy) raw_sets;
val bd_rhs = prep_term no_defs_lthy raw_bd;
val wit_rhss = map (prep_term no_defs_lthy) raw_wits;
val rel_rhs_opt = Option.map (prep_term no_defs_lthy) raw_rel_opt;
val pred_rhs_opt = Option.map (prep_term no_defs_lthy) raw_pred_opt;
fun err T =
error ("Trying to register the type " ^ quote (Syntax.string_of_typ no_defs_lthy T) ^
" as unnamed BNF");
val (bnf_b, key) =
if Binding.is_empty bnf_b then
(case T_rhs of
Type (C, Ts) =>
if forall (can dest_TFree) Ts andalso not (has_duplicates (op =) Ts) then
(Binding.qualified_name C, C)
else
err T_rhs
| T => err T)
else
(bnf_b, Local_Theory.full_name no_defs_lthy bnf_b);
val (((alphas, betas, deads, Calpha),
(bnf_map, bnf_sets, bnf_bd, bnf_wits, bnf_rel, bnf_pred),
(bnf_map_def, bnf_set_defs, bnf_bd_def, bnf_wit_defs, bnf_rel_def, bnf_pred_def),
(mk_bnf_map_Ds, mk_bnf_t_Ds, mk_bnf_T_Ds, _, _, mk_rel_spec, mk_pred_spec)), lthy) =
define_bnf_consts const_policy fact_policy internal Ds_opt map_b rel_b pred_b set_bs
(((((((bnf_b, T_rhs), map_rhs), set_rhss), bd_rhs), wit_rhss), rel_rhs_opt), pred_rhs_opt)
no_defs_lthy;
val dead = length deads;
val (((((((As', Bs'), Cs), unsorted_Ds), Es), B1Ts), B2Ts), (Ts, T)) = lthy
|> mk_TFrees live
||>> mk_TFrees live
||>> mk_TFrees live
||>> mk_TFrees dead
||>> mk_TFrees live
||>> mk_TFrees live
||>> mk_TFrees live
||> fst o mk_TFrees 1
||> the_single
||> `(replicate live);
val Ds = map2 (resort_tfree_or_tvar o Type.sort_of_atyp) deads unsorted_Ds;
val mk_bnf_map = mk_bnf_map_Ds Ds;
val mk_bnf_t = mk_bnf_t_Ds Ds;
val mk_bnf_T = mk_bnf_T_Ds Ds;
val pred1PTs = map mk_pred1T As';
val pred1QTs = map mk_pred1T Bs';
val pred2RTs = map2 mk_pred2T As' Bs';
val pred2RTsAsCs = map2 mk_pred2T As' Cs;
val pred2RTsBsCs = map2 mk_pred2T Bs' Cs;
val pred2RTsBsEs = map2 mk_pred2T Bs' Es;
val pred2RTsCsBs = map2 mk_pred2T Cs Bs';
val pred2RTsCsEs = map2 mk_pred2T Cs Es;
val pred2RT's = map2 mk_pred2T Bs' As';
val self_pred2RTs = map2 mk_pred2T As' As';
val transfer_domRTs = map2 mk_pred2T As' B1Ts;
val transfer_ranRTs = map2 mk_pred2T Bs' B2Ts;
val CA' = mk_bnf_T As' Calpha;
val CB' = mk_bnf_T Bs' Calpha;
val CC' = mk_bnf_T Cs Calpha;
val CE' = mk_bnf_T Es Calpha;
val CB1 = mk_bnf_T B1Ts Calpha;
val CB2 = mk_bnf_T B2Ts Calpha;
val bnf_map_AsAs = mk_bnf_map As' As';
val bnf_map_AsBs = mk_bnf_map As' Bs';
val bnf_map_AsCs = mk_bnf_map As' Cs;
val bnf_map_BsCs = mk_bnf_map Bs' Cs;
val bnf_sets_As = map (mk_bnf_t As') bnf_sets;
val bnf_sets_Bs = map (mk_bnf_t Bs') bnf_sets;
val bnf_bd_As = mk_bnf_t As' bnf_bd;
fun mk_bnf_rel RTs CA CB = normalize_rel lthy RTs CA CB bnf_rel;
fun mk_bnf_pred PTs CA = normalize_pred lthy PTs CA bnf_pred;
val ((((((((((((((((((((((((((fs, fs'), gs), hs), is), x), x'), y), y'), zs), zs'), ys), As),
As_copy), bs), (Ps, Ps')), Ps_copy), Qs), Rs), Rs_copy), Ss), S_AsCs), S_CsBs), S_BsEs),
transfer_domRs), transfer_ranRs), _) = lthy
|> mk_Frees "f" (map2 (curry op -->) As' Bs')
||>> mk_Frees "f" (map2 (curry op -->) As' Bs')
||>> mk_Frees "g" (map2 (curry op -->) Bs' Cs)
||>> mk_Frees "h" (map2 (curry op -->) As' Ts)
||>> mk_Frees "i" (map2 (curry op -->) As' Cs)
||>> yield_singleton (mk_Frees "x") CA'
||>> yield_singleton (mk_Frees "x") CA'
||>> yield_singleton (mk_Frees "y") CB'
||>> yield_singleton (mk_Frees "y") CB'
||>> mk_Frees "z" As'
||>> mk_Frees "z" As'
||>> mk_Frees "y" Bs'
||>> mk_Frees "A" (map HOLogic.mk_setT As')
||>> mk_Frees "A" (map HOLogic.mk_setT As')
||>> mk_Frees "b" As'
||>> mk_Frees' "P" pred1PTs
||>> mk_Frees "P" pred1PTs
||>> mk_Frees "Q" pred1QTs
||>> mk_Frees "R" pred2RTs
||>> mk_Frees "R" pred2RTs
||>> mk_Frees "S" pred2RTsBsCs
||>> mk_Frees "S" pred2RTsAsCs
||>> mk_Frees "S" pred2RTsCsBs
||>> mk_Frees "S" pred2RTsBsEs
||>> mk_Frees "R" transfer_domRTs
||>> mk_Frees "S" transfer_ranRTs;
val fs_copy = map2 (retype_const_or_free o fastype_of) fs gs;
val x_copy = retype_const_or_free CA' y';
val y_copy = retype_const_or_free CB' x';
val rel = mk_bnf_rel pred2RTs CA' CB';
val pred = mk_bnf_pred pred1PTs CA';
val pred' = mk_bnf_pred pred1QTs CB';
val relCsEs = mk_bnf_rel pred2RTsCsEs CC' CE';
val relAsAs = mk_bnf_rel self_pred2RTs CA' CA';
val bnf_wit_As = map (apsnd (mk_bnf_t As')) bnf_wits;
val map_id0_goal =
let val bnf_map_app_id = Term.list_comb (bnf_map_AsAs, map HOLogic.id_const As') in
mk_Trueprop_eq (bnf_map_app_id, HOLogic.id_const CA')
end;
val map_comp0_goal =
let
val bnf_map_app_comp = Term.list_comb (bnf_map_AsCs, map2 (curry HOLogic.mk_comp) gs fs);
val comp_bnf_map_app = HOLogic.mk_comp
(Term.list_comb (bnf_map_BsCs, gs), Term.list_comb (bnf_map_AsBs, fs));
in
fold_rev Logic.all (fs @ gs) (mk_Trueprop_eq (bnf_map_app_comp, comp_bnf_map_app))
end;
fun mk_map_cong_prem mk_implies x z set f f_copy =
Logic.all z (mk_implies (mk_Trueprop_mem (z, set $ x), mk_Trueprop_eq (f $ z, f_copy $ z)));
val map_cong0_goal =
let
val prems = @{map 4} (mk_map_cong_prem Logic.mk_implies x) zs bnf_sets_As fs fs_copy;
val eq = mk_Trueprop_eq (Term.list_comb (bnf_map_AsBs, fs) $ x,
Term.list_comb (bnf_map_AsBs, fs_copy) $ x);
in
fold_rev Logic.all (x :: fs @ fs_copy) (Logic.list_implies (prems, eq))
end;
val set_map0s_goal =
let
fun mk_goal setA setB f =
let
val set_comp_map = HOLogic.mk_comp (setB, Term.list_comb (bnf_map_AsBs, fs));
val image_comp_set = HOLogic.mk_comp (mk_image f, setA);
in
fold_rev Logic.all fs (mk_Trueprop_eq (set_comp_map, image_comp_set))
end;
in
@{map 3} mk_goal bnf_sets_As bnf_sets_Bs fs
end;
val card_order_bd_goal = HOLogic.mk_Trueprop (mk_card_order bnf_bd_As);
val cinfinite_bd_goal = HOLogic.mk_Trueprop (mk_cinfinite bnf_bd_As);
val regularCard_bd_goal = HOLogic.mk_Trueprop (mk_regularCard bnf_bd_As);
val set_bds_goal =
let
fun mk_goal set =
Logic.all x (HOLogic.mk_Trueprop (mk_ordLess (mk_card_of (set $ x)) bnf_bd_As));
in
map mk_goal bnf_sets_As
end;
val relAsCs = mk_bnf_rel pred2RTsAsCs CA' CC';
val relBsCs = mk_bnf_rel pred2RTsBsCs CB' CC';
val relCsBs = mk_bnf_rel pred2RTsCsBs CC' CB';
val rel_OO_lhs = Term.list_comb (relAsCs, map2 (curry mk_rel_compp) Rs Ss);
val rel_OO_rhs = mk_rel_compp (Term.list_comb (rel, Rs), Term.list_comb (relBsCs, Ss));
val le_rel_OO_goal =
fold_rev Logic.all (Rs @ Ss) (HOLogic.mk_Trueprop (mk_leq rel_OO_rhs rel_OO_lhs));
val rel_OO_Grp_goal = fold_rev Logic.all Rs (mk_Trueprop_eq (Term.list_comb (rel, Rs),
Term.list_comb (mk_rel_spec Ds As' Bs', Rs)));
val pred_set_goal = fold_rev Logic.all Ps (mk_Trueprop_eq (Term.list_comb (pred, Ps),
Term.list_comb (mk_pred_spec Ds As', Ps)));
val goals = zip_axioms map_id0_goal map_comp0_goal map_cong0_goal set_map0s_goal
card_order_bd_goal cinfinite_bd_goal regularCard_bd_goal set_bds_goal le_rel_OO_goal rel_OO_Grp_goal pred_set_goal;
val mk_wit_goals = mk_wit_goals bs zs bnf_sets_As;
fun triv_wit_tac ctxt = mk_trivial_wit_tac ctxt bnf_wit_defs;
val wit_goalss =
(if null raw_wits then SOME triv_wit_tac else NONE, map mk_wit_goals bnf_wit_As);
fun after_qed mk_wit_thms thms lthy =
let
val (axioms, nontriv_wit_thms) = apfst (mk_axioms live) (chop (length goals) thms);
val bd_Card_order = #bd_card_order axioms RS @{thm conjunct2[OF card_order_on_Card_order]};
val bd_Cinfinite = @{thm conjI} OF [#bd_cinfinite axioms, bd_Card_order];
val bd_Cnotzero = bd_Cinfinite RS @{thm Cinfinite_Cnotzero};
fun mk_collect_set_map () =
let
val defT = mk_bnf_T Ts Calpha --> HOLogic.mk_setT T;
val collect_map = HOLogic.mk_comp (mk_collect (map (mk_bnf_t Ts) bnf_sets) defT,
Term.list_comb (mk_bnf_map As' Ts, hs));
val image_collect = mk_collect
(map2 (fn h => fn set => HOLogic.mk_comp (mk_image h, set)) hs bnf_sets_As) defT;
val goal = fold_rev Logic.all hs (mk_Trueprop_eq (collect_map, image_collect));
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
mk_collect_set_map_tac ctxt (#set_map0 axioms))
|> Thm.close_derivation ⌂
end;
val collect_set_map = Lazy.lazy mk_collect_set_map;
fun mk_in_mono () =
let
val prems_mono = map2 (HOLogic.mk_Trueprop oo mk_leq) As As_copy;
val in_mono_goal =
fold_rev Logic.all (As @ As_copy)
(Logic.list_implies (prems_mono, HOLogic.mk_Trueprop
(mk_leq (mk_in As bnf_sets_As CA') (mk_in As_copy bnf_sets_As CA'))));
in
Goal.prove_sorry lthy [] [] in_mono_goal (fn {context = ctxt, prems = _} =>
mk_in_mono_tac ctxt live)
|> Thm.close_derivation ⌂
end;
val in_mono = Lazy.lazy mk_in_mono;
fun mk_in_cong () =
let
val prems_cong = map2 (curry mk_Trueprop_eq) As As_copy;
val in_cong_goal =
fold_rev Logic.all (As @ As_copy)
(Logic.list_implies (prems_cong,
mk_Trueprop_eq (mk_in As bnf_sets_As CA', mk_in As_copy bnf_sets_As CA')));
in
Goal.prove_sorry lthy [] [] in_cong_goal
(fn {context = ctxt, prems = _} => (TRY o hyp_subst_tac ctxt THEN' rtac ctxt refl) 1)
|> Thm.close_derivation ⌂
end;
val in_cong = Lazy.lazy mk_in_cong;
val map_id = Lazy.lazy (fn () => mk_map_id (#map_id0 axioms));
val map_ident0 = Lazy.lazy (fn () => mk_map_ident lthy (#map_id0 axioms));
val map_ident = Lazy.lazy (fn () => mk_map_ident lthy (Lazy.force map_id));
val map_ident_strong = Lazy.lazy (fn () =>
mk_map_ident_strong lthy (#map_cong0 axioms) (Lazy.force map_id));
val map_comp = Lazy.lazy (fn () => mk_map_comp (#map_comp0 axioms));
fun mk_map_cong mk_implies () =
let
val prem0 = mk_Trueprop_eq (x, x_copy);
val prems = @{map 4} (mk_map_cong_prem mk_implies x_copy) zs bnf_sets_As fs fs_copy;
val eq = mk_Trueprop_eq (Term.list_comb (bnf_map_AsBs, fs) $ x,
Term.list_comb (bnf_map_AsBs, fs_copy) $ x_copy);
val goal = fold_rev Logic.all (x :: x_copy :: fs @ fs_copy)
(Logic.list_implies (prem0 :: prems, eq));
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
unfold_thms_tac ctxt @{thms simp_implies_def} THEN
mk_map_cong_tac ctxt (#map_cong0 axioms))
|> Thm.close_derivation ⌂
end;
val map_cong = Lazy.lazy (mk_map_cong Logic.mk_implies);
val map_cong_simp = Lazy.lazy (mk_map_cong (fn (a, b) => \<^term>‹simp_implies› $ a $ b));
fun mk_inj_map () =
let
val prems = map (HOLogic.mk_Trueprop o mk_inj) fs;
val concl = HOLogic.mk_Trueprop (mk_inj (Term.list_comb (bnf_map_AsBs, fs)));
val goal = fold_rev Logic.all fs (Logic.list_implies (prems, concl));
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
mk_inj_map_tac ctxt live (Lazy.force map_id) (Lazy.force map_comp) (#map_cong0 axioms)
(Lazy.force map_cong))
|> Thm.close_derivation ⌂
end;
val inj_map = Lazy.lazy mk_inj_map;
val set_map = map (fn thm => Lazy.lazy (fn () => mk_set_map thm)) (#set_map0 axioms);
val wit_thms =
if null nontriv_wit_thms then mk_wit_thms (map Lazy.force set_map) else nontriv_wit_thms;
fun mk_in_bd () =
let
val bdT = fst (dest_relT (fastype_of bnf_bd_As));
val bdTs = replicate live bdT;
val bd_bnfT = mk_bnf_T bdTs Calpha;
val surj_imp_ordLeq_inst = (if live = 0 then TrueI else
let
val ranTs = map (fn AT => mk_sumT (AT, HOLogic.unitT)) As';
val funTs = map (fn T => bdT --> T) ranTs;
val ran_bnfT = mk_bnf_T ranTs Calpha;
val (revTs, Ts) = `rev (bd_bnfT :: funTs);
val cTs = map (SOME o Thm.ctyp_of lthy) [ran_bnfT,
Library.foldr1 HOLogic.mk_prodT Ts];
val tinst = fold (fn T => fn t =>
HOLogic.mk_case_prod (Term.absdummy T t)) (tl revTs)
(Term.absdummy (hd revTs) (Term.list_comb (mk_bnf_map bdTs ranTs,
map Bound (live - 1 downto 0)) $ Bound live));
val cts = [NONE, SOME (Thm.cterm_of lthy tinst)];
in
Thm.instantiate' cTs cts @{thm surj_imp_ordLeq}
end);
val bd = mk_cexp
(if live = 0 then ctwo
else mk_csum (Library.foldr1 (uncurry mk_csum) (map mk_card_of As)) ctwo)
(mk_csum bnf_bd_As (mk_card_of (HOLogic.mk_UNIV bd_bnfT)));
val in_bd_goal =
fold_rev Logic.all As
(HOLogic.mk_Trueprop (mk_ordLeq (mk_card_of (mk_in As bnf_sets_As CA')) bd));
val weak_set_bds = map (fn thm => @{thm ordLess_imp_ordLeq} OF [thm]) (#set_bd axioms);
in
Goal.prove_sorry lthy [] [] in_bd_goal
(fn {context = ctxt, prems = _} => mk_in_bd_tac ctxt live surj_imp_ordLeq_inst
(Lazy.force map_comp) (Lazy.force map_id) (#map_cong0 axioms)
(map Lazy.force set_map) weak_set_bds (#bd_card_order axioms)
bd_Card_order bd_Cinfinite bd_Cnotzero)
|> Thm.close_derivation ⌂
end;
val in_bd = Lazy.lazy mk_in_bd;
val rel_OO_Grp = #rel_OO_Grp axioms;
val rel_OO_Grps = no_refl [rel_OO_Grp];
fun mk_rel_Grp () =
let
val lhs = Term.list_comb (rel, map2 mk_Grp As fs);
val rhs = mk_Grp (mk_in As bnf_sets_As CA') (Term.list_comb (bnf_map_AsBs, fs));
val goal = fold_rev Logic.all (As @ fs) (mk_Trueprop_eq (lhs, rhs));
in
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} => mk_rel_Grp_tac ctxt rel_OO_Grps (#map_id0 axioms)
(#map_cong0 axioms) (Lazy.force map_id) (Lazy.force map_comp)
(map Lazy.force set_map))
|> Thm.close_derivation ⌂
end;
val rel_Grp = Lazy.lazy mk_rel_Grp;
fun mk_rel_prems f = map2 (HOLogic.mk_Trueprop oo f) Rs Rs_copy;
fun mk_rel_concl f = HOLogic.mk_Trueprop
(f (Term.list_comb (rel, Rs), Term.list_comb (rel, Rs_copy)));
fun mk_rel_mono () =
let
val mono_prems = mk_rel_prems mk_leq;
val mono_concl = mk_rel_concl (uncurry mk_leq);
in
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (Rs @ Rs_copy) (Logic.list_implies (mono_prems, mono_concl)))
(fn {context = ctxt, prems = _} =>
mk_rel_mono_tac ctxt rel_OO_Grps (Lazy.force in_mono))
|> Thm.close_derivation ⌂
end;
fun mk_rel_cong0 () =
let
val cong_prems = mk_rel_prems (curry HOLogic.mk_eq);
val cong_concl = mk_rel_concl HOLogic.mk_eq;
in
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (Rs @ Rs_copy) (Logic.list_implies (cong_prems, cong_concl)))
(fn {context = ctxt, prems = _} => (TRY o hyp_subst_tac ctxt THEN' rtac ctxt refl) 1)
|> Thm.close_derivation ⌂
end;
val rel_mono = Lazy.lazy mk_rel_mono;
val rel_cong0 = Lazy.lazy mk_rel_cong0;
fun mk_rel_eq () =
Goal.prove_sorry lthy [] []
(mk_Trueprop_eq (Term.list_comb (relAsAs, map HOLogic.eq_const As'),
HOLogic.eq_const CA'))
(fn {context = ctxt, prems = _} =>
mk_rel_eq_tac ctxt live (Lazy.force rel_Grp) (Lazy.force rel_cong0) (#map_id0 axioms))
|> Thm.close_derivation ⌂;
val rel_eq = Lazy.lazy mk_rel_eq;
fun mk_rel_conversep () =
let
val relBsAs = mk_bnf_rel pred2RT's CB' CA';
val lhs = Term.list_comb (relBsAs, map mk_conversep Rs);
val rhs = mk_conversep (Term.list_comb (rel, Rs));
val le_goal = fold_rev Logic.all Rs (HOLogic.mk_Trueprop (mk_leq lhs rhs));
val le_thm = Goal.prove_sorry lthy [] [] le_goal
(fn {context = ctxt, prems = _} => mk_rel_conversep_le_tac ctxt rel_OO_Grps
(Lazy.force rel_eq) (#map_cong0 axioms) (Lazy.force map_comp)
(map Lazy.force set_map))
|> Thm.close_derivation ⌂
val goal = fold_rev Logic.all Rs (mk_Trueprop_eq (lhs, rhs));
in
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} =>
mk_rel_conversep_tac ctxt le_thm (Lazy.force rel_mono))
|> Thm.close_derivation ⌂
end;
val rel_conversep = Lazy.lazy mk_rel_conversep;
fun mk_rel_OO () =
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (Rs @ Ss) (HOLogic.mk_Trueprop (mk_leq rel_OO_lhs rel_OO_rhs)))
(fn {context = ctxt, prems = _} => mk_rel_OO_le_tac ctxt rel_OO_Grps (Lazy.force rel_eq)
(#map_cong0 axioms) (Lazy.force map_comp) (map Lazy.force set_map))
|> Thm.close_derivation ⌂
|> (fn thm => @{thm antisym} OF [thm, #le_rel_OO axioms]);
val rel_OO = Lazy.lazy mk_rel_OO;
fun mk_in_rel () = trans OF [rel_OO_Grp, @{thm OO_Grp_alt}] RS @{thm predicate2_eqD};
val in_rel = Lazy.lazy mk_in_rel;
fun mk_rel_flip () =
unfold_thms lthy @{thms conversep_iff}
(Lazy.force rel_conversep RS @{thm predicate2_eqD});
val rel_flip = Lazy.lazy mk_rel_flip;
fun mk_rel_mono_strong0 () =
let
fun mk_prem setA setB R S a b =
HOLogic.mk_Trueprop
(mk_Ball (setA $ x) (Term.absfree (dest_Free a)
(mk_Ball (setB $ y) (Term.absfree (dest_Free b)
(HOLogic.mk_imp (R $ a $ b, S $ a $ b))))));
val prems = HOLogic.mk_Trueprop (Term.list_comb (rel, Rs) $ x $ y) ::
@{map 6} mk_prem bnf_sets_As bnf_sets_Bs Rs Rs_copy zs ys;
val concl = HOLogic.mk_Trueprop (Term.list_comb (rel, Rs_copy) $ x $ y);
in
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (x :: y :: Rs @ Rs_copy) (Logic.list_implies (prems, concl)))
(fn {context = ctxt, prems = _} => mk_rel_mono_strong0_tac ctxt (Lazy.force in_rel)
(map Lazy.force set_map))
|> Thm.close_derivation ⌂
end;
val rel_mono_strong0 = Lazy.lazy mk_rel_mono_strong0;
val rel_mono_strong = Lazy.map (Object_Logic.rulify lthy) rel_mono_strong0;
fun mk_rel_cong_prem mk_implies x x' z z' set set' R R_copy =
Logic.all z (Logic.all z'
(mk_implies (mk_Trueprop_mem (z, set $ x), mk_implies (mk_Trueprop_mem (z', set' $ x'),
mk_Trueprop_eq (R $ z $ z', R_copy $ z $ z')))));
fun mk_rel_cong mk_implies () =
let
val prem0 = mk_Trueprop_eq (x, x_copy);
val prem1 = mk_Trueprop_eq (y, y_copy);
val prems = @{map 6} (mk_rel_cong_prem mk_implies x_copy y_copy)
zs ys bnf_sets_As bnf_sets_Bs Rs Rs_copy;
val eq = mk_Trueprop_eq (Term.list_comb (rel, Rs) $ x $ y,
Term.list_comb (rel, Rs_copy) $ x_copy $ y_copy);
in
fold (Variable.add_free_names lthy) (eq :: prem0 :: prem1 :: prems) []
|> (fn vars => Goal.prove_sorry lthy vars (prem0 :: prem1 :: prems) eq
(fn {context = ctxt, prems} =>
mk_rel_cong_tac ctxt (chop 2 prems) (Lazy.force rel_mono_strong)))
|> Thm.close_derivation ⌂
end;
val rel_cong = Lazy.lazy (mk_rel_cong Logic.mk_implies);
val rel_cong_simp = Lazy.lazy (mk_rel_cong (fn (a, b) => \<^term>‹simp_implies› $ a $ b));
fun mk_pred_prems f = map2 (HOLogic.mk_Trueprop oo f) Ps Ps_copy;
fun mk_pred_concl f = HOLogic.mk_Trueprop
(f (Term.list_comb (pred, Ps), Term.list_comb (pred, Ps_copy)));
fun mk_pred_cong0 () =
let
val cong_prems = mk_pred_prems (curry HOLogic.mk_eq);
val cong_concl = mk_pred_concl HOLogic.mk_eq;
in
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (Ps @ Ps_copy) (Logic.list_implies (cong_prems, cong_concl)))
(fn {context = ctxt, prems = _} => (TRY o hyp_subst_tac ctxt THEN' rtac ctxt refl) 1)
|> Thm.close_derivation ⌂
end;
val pred_cong0 = Lazy.lazy mk_pred_cong0;
fun mk_rel_eq_onp () =
let
val lhs = Term.list_comb (relAsAs, map mk_eq_onp Ps);
val rhs = mk_eq_onp (Term.list_comb (pred, Ps));
in
Goal.prove_sorry lthy (map fst Ps') [] (mk_Trueprop_eq (lhs, rhs))
(fn {context = ctxt, prems = _} =>
mk_rel_eq_onp_tac ctxt (#pred_set axioms) (#map_id0 axioms) (Lazy.force rel_Grp))
|> Thm.close_derivation ⌂
end;
val rel_eq_onp = Lazy.lazy mk_rel_eq_onp;
val pred_rel = Lazy.map (fn thm => thm RS sym RS @{thm eq_onp_eqD}) rel_eq_onp;
fun mk_pred_mono_strong0 () =
let
fun mk_prem setA P Q a =
HOLogic.mk_Trueprop
(mk_Ball (setA $ x) (Term.absfree (dest_Free a) (HOLogic.mk_imp (P $ a, Q $ a))));
val prems = HOLogic.mk_Trueprop (Term.list_comb (pred, Ps) $ x) ::
@{map 4} mk_prem bnf_sets_As Ps Ps_copy zs;
val concl = HOLogic.mk_Trueprop (Term.list_comb (pred, Ps_copy) $ x);
in
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (x :: Ps @ Ps_copy) (Logic.list_implies (prems, concl)))
(fn {context = ctxt, prems = _} =>
mk_pred_mono_strong0_tac ctxt (Lazy.force pred_rel) (Lazy.force rel_mono_strong0))
|> Thm.close_derivation ⌂
end;
val pred_mono_strong0 = Lazy.lazy mk_pred_mono_strong0;
val pred_mono_strong = Lazy.map (Object_Logic.rulify lthy) pred_mono_strong0;
fun mk_pred_mono () =
let
val mono_prems = mk_pred_prems mk_leq;
val mono_concl = mk_pred_concl (uncurry mk_leq);
in
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (Ps @ Ps_copy) (Logic.list_implies (mono_prems, mono_concl)))
(fn {context = ctxt, prems = _} =>
mk_pred_mono_tac ctxt (Lazy.force rel_eq_onp) (Lazy.force rel_mono))
|> Thm.close_derivation ⌂
end;
val pred_mono = Lazy.lazy mk_pred_mono;
fun mk_pred_cong_prem mk_implies x z set P P_copy =
Logic.all z
(mk_implies (mk_Trueprop_mem (z, set $ x), mk_Trueprop_eq (P $ z, P_copy $ z)));
fun mk_pred_cong mk_implies () =
let
val prem0 = mk_Trueprop_eq (x, x_copy);
val prems = @{map 4} (mk_pred_cong_prem mk_implies x_copy) zs bnf_sets_As Ps Ps_copy;
val eq = mk_Trueprop_eq (Term.list_comb (pred, Ps) $ x,
Term.list_comb (pred, Ps_copy) $ x_copy);
in
fold (Variable.add_free_names lthy) (eq :: prem0 :: prems) []
|> (fn vars => Goal.prove_sorry lthy vars (prem0 :: prems) eq
(fn {context = ctxt, prems} =>
mk_rel_cong_tac ctxt (chop 1 prems) (Lazy.force pred_mono_strong)))
|> Thm.close_derivation ⌂
end;
val pred_cong = Lazy.lazy (mk_pred_cong Logic.mk_implies);
val pred_cong_simp = Lazy.lazy (mk_pred_cong (fn (a, b) => \<^term>‹simp_implies› $ a $ b));
fun mk_map_cong_pred () =
let
val prem0 = mk_Trueprop_eq (x, x_copy);
fun mk_eq f g z = Term.absfree (dest_Free z) (HOLogic.mk_eq (f $ z, g $ z));
val prem = HOLogic.mk_Trueprop
(Term.list_comb (pred, @{map 3} mk_eq fs fs_copy zs) $ x_copy);
val eq = mk_Trueprop_eq (Term.list_comb (bnf_map_AsBs, fs) $ x,
Term.list_comb (bnf_map_AsBs, fs_copy) $ x_copy);
val goal = fold_rev Logic.all (x :: x_copy :: fs @ fs_copy)
(Logic.list_implies ([prem0, prem], eq));
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
unfold_thms_tac ctxt [#pred_set axioms] THEN
HEADGOAL (EVERY' [REPEAT_DETERM o etac ctxt conjE,
etac ctxt (Lazy.force map_cong) THEN_ALL_NEW
(etac ctxt @{thm bspec} THEN' assume_tac ctxt)]))
|> Thm.close_derivation ⌂
end;
val map_cong_pred = Lazy.lazy mk_map_cong_pred;
fun mk_rel_map () =
let
fun mk_goal lhs rhs =
fold_rev Logic.all ([x, y] @ S_CsBs @ S_AsCs @ is @ gs) (mk_Trueprop_eq (lhs, rhs));
val lhss =
[Term.list_comb (relCsBs, S_CsBs) $ (Term.list_comb (bnf_map_AsCs, is) $ x) $ y,
Term.list_comb (relAsCs, S_AsCs) $ x $ (Term.list_comb (bnf_map_BsCs, gs) $ y)];
val rhss =
[Term.list_comb (rel, @{map 3} (fn f => fn P => fn T =>
mk_vimage2p f (HOLogic.id_const T) $ P) is S_CsBs Bs') $ x $ y,
Term.list_comb (rel, @{map 3} (fn f => fn P => fn T =>
mk_vimage2p (HOLogic.id_const T) f $ P) gs S_AsCs As') $ x $ y];
val goals = map2 mk_goal lhss rhss;
in
goals
|> map (fn goal => Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} =>
mk_rel_map0_tac ctxt live (Lazy.force rel_OO) (Lazy.force rel_conversep)
(Lazy.force rel_Grp) (Lazy.force map_id)))
|> map (unfold_thms lthy @{thms vimage2p_def[of id, simplified id_apply]
vimage2p_def[of _ id, simplified id_apply]})
|> map (Thm.close_derivation ⌂)
end;
val rel_map = Lazy.lazy mk_rel_map;
fun mk_rel_refl () = @{thm ge_eq_refl[OF ord_eq_le_trans]} OF
[Lazy.force rel_eq RS sym, Lazy.force rel_mono OF (replicate live @{thm refl_ge_eq})];
val rel_refl = Lazy.lazy mk_rel_refl;
fun mk_rel_refl_strong () =
(rule_by_tactic lthy (ALLGOALS (Object_Logic.full_atomize_tac lthy))
((Lazy.force rel_eq RS @{thm predicate2_eqD}) RS @{thm iffD2[OF _ refl]} RS
Lazy.force rel_mono_strong)) OF
(replicate live @{thm diag_imp_eq_le})
val rel_refl_strong = Lazy.lazy mk_rel_refl_strong;
fun mk_rel_preserves mk_prop prop_conv_thm thm () =
let
val Rs = map2 retype_const_or_free self_pred2RTs Rs;
val prems = map (HOLogic.mk_Trueprop o mk_prop) Rs;
val goal = HOLogic.mk_Trueprop (mk_prop (Term.list_comb (relAsAs, Rs)));
val vars = fold (Variable.add_free_names lthy) (goal :: prems) [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, goal))
(fn {context = ctxt, prems = _} =>
unfold_thms_tac ctxt [prop_conv_thm] THEN
HEADGOAL (rtac ctxt (Lazy.force thm RS sym RS @{thm ord_eq_le_trans})
THEN' rtac ctxt (Lazy.force rel_mono) THEN_ALL_NEW assume_tac ctxt))
|> Thm.close_derivation ⌂
end;
val rel_reflp = Lazy.lazy (mk_rel_preserves mk_reflp @{thm reflp_eq} rel_eq);
val rel_symp = Lazy.lazy (mk_rel_preserves mk_symp @{thm symp_conversep} rel_conversep);
val rel_transp = Lazy.lazy (mk_rel_preserves mk_transp @{thm transp_relcompp} rel_OO);
fun mk_pred_True () =
let
val lhs = Term.list_comb (pred, map (fn T => absdummy T \<^term>‹True›) As');
val rhs = absdummy CA' \<^term>‹True›;
val goal = mk_Trueprop_eq (lhs, rhs);
in
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} =>
HEADGOAL (EVERY' (map (rtac ctxt) [ext, Lazy.force pred_rel RS trans,
Lazy.force rel_cong0 RS fun_cong RS fun_cong RS trans OF
replicate live @{thm eq_onp_True},
Lazy.force rel_eq RS fun_cong RS fun_cong RS trans, @{thm eqTrueI[OF refl]}])))
|> Thm.close_derivation ⌂
end;
val pred_True = Lazy.lazy mk_pred_True;
fun mk_pred_map () =
let
val lhs = Term.list_comb (pred', Qs) $ (Term.list_comb (bnf_map_AsBs, fs) $ x);
val rhs = Term.list_comb (pred, @{map 2} (curry HOLogic.mk_comp) Qs fs) $ x;
val goal = mk_Trueprop_eq (lhs, rhs);
val vars = Variable.add_free_names lthy goal [];
val pred_set = #pred_set axioms RS fun_cong RS sym;
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} =>
HEADGOAL (rtac ctxt (pred_set RSN (2, pred_set RSN (2, box_equals)))) THEN
unfold_thms_tac ctxt
(@{thms Ball_image_comp ball_empty} @ map Lazy.force set_map) THEN
HEADGOAL (rtac ctxt refl))
|> Thm.close_derivation ⌂
end;
val pred_map = Lazy.lazy mk_pred_map;
fun mk_map_transfer () =
let
val rels = map2 mk_rel_fun transfer_domRs transfer_ranRs;
val rel = mk_rel_fun
(Term.list_comb (mk_bnf_rel transfer_domRTs CA' CB1, transfer_domRs))
(Term.list_comb (mk_bnf_rel transfer_ranRTs CB' CB2, transfer_ranRs));
val concl = HOLogic.mk_Trueprop
(fold_rev mk_rel_fun rels rel $ bnf_map_AsBs $ mk_bnf_map B1Ts B2Ts);
in
Goal.prove_sorry lthy [] []
(fold_rev Logic.all (transfer_domRs @ transfer_ranRs) concl)
(fn {context = ctxt, prems = _} => mk_map_transfer_tac ctxt (Lazy.force rel_mono)
(Lazy.force in_rel) (map Lazy.force set_map) (#map_cong0 axioms)
(Lazy.force map_comp))
|> Thm.close_derivation ⌂
end;
val map_transfer = Lazy.lazy mk_map_transfer;
fun mk_pred_transfer () =
let
val iff = HOLogic.eq_const HOLogic.boolT;
val prem_rels = map (fn T => mk_rel_fun T iff) Rs;
val prem_elems = mk_rel_fun (Term.list_comb (rel, Rs)) iff;
val goal = HOLogic.mk_Trueprop
(fold_rev mk_rel_fun prem_rels prem_elems $ pred $ pred');
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
mk_pred_transfer_tac ctxt live (Lazy.force in_rel) (Lazy.force pred_map)
(Lazy.force pred_cong))
|> Thm.close_derivation ⌂
end;
val pred_transfer = Lazy.lazy mk_pred_transfer;
fun mk_rel_transfer () =
let
val iff = HOLogic.eq_const HOLogic.boolT;
val prem_rels =
map2 (fn T1 => fn T2 => mk_rel_fun T1 (mk_rel_fun T2 iff)) S_AsCs S_BsEs;
val prem_elems =
mk_rel_fun (Term.list_comb (mk_bnf_rel pred2RTsAsCs CA' CC', S_AsCs))
(mk_rel_fun (Term.list_comb (mk_bnf_rel pred2RTsBsEs CB' CE', S_BsEs)) iff);
val goal =
HOLogic.mk_Trueprop (fold_rev mk_rel_fun prem_rels prem_elems $ rel $ relCsEs);
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} =>
mk_rel_transfer_tac ctxt (Lazy.force in_rel) (Lazy.force rel_map)
(Lazy.force rel_mono_strong))
|> Thm.close_derivation ⌂
end;
val rel_transfer = Lazy.lazy mk_rel_transfer;
fun mk_set_transfer () =
let
val rel_sets = map2 (fn A => fn B => mk_rel 1 [A] [B] \<^term>‹rel_set›) As' Bs';
val rel_Rs = Term.list_comb (rel, Rs);
val goals = @{map 4} (fn R => fn rel_set => fn setA => fn setB => HOLogic.mk_Trueprop
(mk_rel_fun rel_Rs (rel_set $ R) $ setA $ setB)) Rs rel_sets bnf_sets_As bnf_sets_Bs;
in
if null goals then []
else
let
val goal = Logic.mk_conjunction_balanced goals;
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} =>
mk_set_transfer_tac ctxt (Lazy.force in_rel) (map Lazy.force set_map))
|> Thm.close_derivation ⌂
|> Conjunction.elim_balanced (length goals)
end
end;
val set_transfer = Lazy.lazy mk_set_transfer;
fun mk_inj_map_strong () =
let
val assms = @{map 5} (fn setA => fn z => fn f => fn z' => fn f' =>
fold_rev Logic.all [z, z']
(Logic.mk_implies (mk_Trueprop_mem (z, setA $ x),
Logic.mk_implies (mk_Trueprop_mem (z', setA $ x'),
Logic.mk_implies (mk_Trueprop_eq (f $ z, f' $ z'),
mk_Trueprop_eq (z, z')))))) bnf_sets_As zs fs zs' fs';
val concl = Logic.mk_implies
(mk_Trueprop_eq
(Term.list_comb (bnf_map_AsBs, fs) $ x,
Term.list_comb (bnf_map_AsBs, fs') $ x'),
mk_Trueprop_eq (x, x'));
val goal = fold_rev Logic.all (x :: x' :: fs @ fs')
(fold_rev (curry Logic.mk_implies) assms concl);
in
Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
mk_inj_map_strong_tac ctxt (Lazy.force rel_eq) (Lazy.force rel_map)
(Lazy.force rel_mono_strong))
|> Thm.close_derivation ⌂
end;
val inj_map_strong = Lazy.lazy mk_inj_map_strong;
val defs = mk_defs bnf_map_def bnf_set_defs bnf_rel_def bnf_pred_def;
val facts = mk_facts bd_Card_order bd_Cinfinite bd_Cnotzero collect_set_map in_bd in_cong
in_mono in_rel inj_map inj_map_strong map_comp map_cong map_cong_simp map_cong_pred map_id
map_ident0 map_ident map_ident_strong map_transfer rel_eq rel_flip set_map rel_cong0 rel_cong
rel_cong_simp rel_map rel_mono rel_mono_strong0 rel_mono_strong set_transfer rel_Grp rel_conversep
rel_OO rel_refl rel_refl_strong rel_reflp rel_symp rel_transp rel_transfer rel_eq_onp
pred_transfer pred_True pred_map pred_rel pred_mono_strong0 pred_mono_strong pred_mono
pred_cong0 pred_cong pred_cong_simp;
val wits = map2 mk_witness bnf_wits wit_thms;
val bnf_rel =
Term.subst_atomic_types ((Ds ~~ deads) @ (As' ~~ alphas) @ (Bs' ~~ betas)) rel;
val bnf_pred = Term.subst_atomic_types ((Ds ~~ deads) @ (As' ~~ alphas)) pred;
val bnf = mk_bnf bnf_b Calpha live alphas betas dead deads bnf_map bnf_sets bnf_bd axioms
defs facts wits bnf_rel bnf_pred;
in
note_bnf_thms fact_policy qualify bnf_b bnf lthy
end;
val one_step_defs =
no_reflexive (bnf_map_def :: bnf_bd_def :: bnf_set_defs @ bnf_wit_defs @
[bnf_rel_def, bnf_pred_def]);
in
(key, goals, wit_goalss, after_qed, lthy, one_step_defs)
end;
structure BNF_Plugin = Plugin(type T = bnf);
fun bnf_interpretation name f =
BNF_Plugin.interpretation name
(fn bnf => fn lthy => f (transfer_bnf (Proof_Context.theory_of lthy) bnf) lthy);
val interpret_bnf = BNF_Plugin.data;
fun register_bnf_raw key bnf =
Local_Theory.declaration {syntax = false, pervasive = true, pos = ⌂}
(fn phi => Data.map (Symtab.update (key, morph_bnf phi bnf)));
fun register_bnf plugins key bnf =
register_bnf_raw key bnf #> interpret_bnf plugins bnf;
fun bnf_def const_policy fact_policy internal qualify tacs wit_tac Ds map_b rel_b pred_b set_bs
raw_csts =
(fn (_, goals, (triv_tac_opt, wit_goalss), after_qed, lthy, one_step_defs) =>
let
fun mk_wits_tac ctxt set_maps =
TRYALL Goal.conjunction_tac THEN
(case triv_tac_opt of
SOME tac => tac ctxt set_maps
| NONE => unfold_thms_tac ctxt one_step_defs THEN wit_tac ctxt);
val wit_goals = map Logic.mk_conjunction_balanced wit_goalss;
fun mk_wit_thms set_maps =
Goal.prove_sorry lthy [] [] (Logic.mk_conjunction_balanced wit_goals)
(fn {context = ctxt, prems = _} => mk_wits_tac ctxt set_maps)
|> Thm.close_derivation ⌂
|> Conjunction.elim_balanced (length wit_goals)
|> map2 (Conjunction.elim_balanced o length) wit_goalss
|> (map o map) (Thm.forall_elim_vars 0);
in
map2 (Thm.close_derivation ⌂ oo Goal.prove_sorry lthy [] [])
goals (map (fn tac => fn {context = ctxt, prems = _} =>
unfold_thms_tac ctxt one_step_defs THEN tac ctxt) tacs)
|> (fn thms => after_qed mk_wit_thms (map single thms) lthy)
end) o prepare_def const_policy fact_policy internal qualify (K I) (K I) Ds map_b rel_b pred_b
set_bs raw_csts;
fun bnf_cmd (raw_csts, raw_plugins) =
(fn (key, goals, (triv_tac_opt, wit_goalss), after_qed, lthy, defs) =>
let
val plugins = raw_plugins lthy;
val wit_goals = map Logic.mk_conjunction_balanced wit_goalss;
fun mk_triv_wit_thms tac set_maps =
Goal.prove_sorry lthy [] [] (Logic.mk_conjunction_balanced wit_goals)
(fn {context = ctxt, prems = _} => TRYALL Goal.conjunction_tac THEN tac ctxt set_maps)
|> Thm.close_derivation ⌂
|> Conjunction.elim_balanced (length wit_goals)
|> map2 (Conjunction.elim_balanced o length) wit_goalss
|> (map o map) (Thm.forall_elim_vars 0);
val (mk_wit_thms, nontriv_wit_goals) =
(case triv_tac_opt of
NONE => (fn _ => [], map (map (rpair [])) wit_goalss)
| SOME tac => (mk_triv_wit_thms tac, []));
in
lthy
|> Proof.theorem NONE (uncurry (register_bnf plugins key) oo after_qed mk_wit_thms)
(map (single o rpair []) goals @ nontriv_wit_goals)
|> Proof.unfolding ([[(@{thm OO_Grp_alt} :: @{thm mem_Collect_eq} :: defs, [])]])
|> Proof.refine_singleton (Method.Basic (fn ctxt =>
Method.SIMPLE_METHOD (TRYALL (rtac ctxt refl))))
end) o prepare_def Do_Inline (user_policy Note_Some) false I Syntax.read_typ Syntax.read_term
NONE Binding.empty Binding.empty Binding.empty [] raw_csts;
fun print_bnfs ctxt =
let
fun pretty_set sets i = Pretty.block
[Pretty.str (mk_setN (i + 1) ^ ":"), Pretty.brk 1,
Pretty.quote (Syntax.pretty_term ctxt (nth sets i))];
fun pretty_bnf (key, BNF {T, map, sets, bd, live, lives, dead, deads, ...}) =
Pretty.big_list
(Pretty.string_of (Pretty.block [Pretty.str key, Pretty.str ":", Pretty.brk 1,
Pretty.quote (Syntax.pretty_typ ctxt T)]))
([Pretty.block [Pretty.str "live:", Pretty.brk 1, Pretty.str (string_of_int live),
Pretty.brk 3, Pretty.list "[" "]" (List.map (Syntax.pretty_typ ctxt) lives)],
Pretty.block [Pretty.str "dead:", Pretty.brk 1, Pretty.str (string_of_int dead),
Pretty.brk 3, Pretty.list "[" "]" (List.map (Syntax.pretty_typ ctxt) deads)],
Pretty.block [Pretty.str (mapN ^ ":"), Pretty.brk 1,
Pretty.quote (Syntax.pretty_term ctxt map)]] @
List.map (pretty_set sets) (0 upto length sets - 1) @
[Pretty.block [Pretty.str (bdN ^ ":"), Pretty.brk 1,
Pretty.quote (Syntax.pretty_term ctxt bd)]]);
in
Pretty.big_list "Registered bounded natural functors:"
(map pretty_bnf (sort_by fst (Symtab.dest (Data.get (Context.Proof ctxt)))))
|> Pretty.writeln
end;
val _ =
Outer_Syntax.command \<^command_keyword>‹print_bnfs›
"print all bounded natural functors"
(Scan.succeed (Toplevel.keep (print_bnfs o Toplevel.context_of)));
val _ =
Outer_Syntax.local_theory_to_proof \<^command_keyword>‹bnf›
"register a type as a bounded natural functor"
(parse_opt_binding_colon -- Parse.typ --|
(Parse.reserved "map" -- \<^keyword>‹:›) -- Parse.term --
Scan.optional ((Parse.reserved "sets" -- \<^keyword>‹:›) |--
Scan.repeat1 (Scan.unless (Parse.reserved "bd") Parse.term)) [] --|
(Parse.reserved "bd" -- \<^keyword>‹:›) -- Parse.term --
Scan.optional ((Parse.reserved "wits" -- \<^keyword>‹:›) |--
Scan.repeat1 (Scan.unless (Parse.reserved "rel" ||
Parse.reserved "plugins") Parse.term)) [] --
Scan.option ((Parse.reserved "rel" -- \<^keyword>‹:›) |-- Parse.term) --
Scan.option ((Parse.reserved "pred" -- \<^keyword>‹:›) |-- Parse.term) --
Scan.optional Plugin_Name.parse_filter (K Plugin_Name.default_filter)
>> bnf_cmd);
end;