File ‹Code/code_target.ML›
signature CODE_TARGET =
sig
val cert_tyco: Proof.context -> string -> string
val read_tyco: Proof.context -> string -> string
datatype pretty_modules = Singleton of string * Pretty.T | Hierarchy of (string list * Pretty.T) list;
val next_export: theory -> string * theory
val export_code_for: ({physical: bool} * (Path.T * Position.T)) option -> string -> string
-> int option -> Token.T list -> Code_Thingol.program -> bool -> Code_Symbol.T list
-> local_theory -> local_theory
val produce_code_for: Proof.context -> string -> string -> int option -> Token.T list
-> Code_Thingol.program -> bool -> Code_Symbol.T list -> (string list * Bytes.T) list * string option list
val present_code_for: Proof.context -> string -> string -> int option -> Token.T list
-> Code_Thingol.program -> Code_Symbol.T list * Code_Symbol.T list -> Bytes.T
val check_code_for: string -> bool -> Token.T list
-> Code_Thingol.program -> bool -> Code_Symbol.T list -> local_theory -> local_theory
val export_code: bool -> string list
-> (((string * string) * ({physical: bool} * (Path.T * Position.T)) option) * Token.T list) list
-> local_theory -> local_theory
val export_code_cmd: bool -> string list
-> (((string * string) * ({physical: bool} * Input.source) option) * Token.T list) list
-> local_theory -> local_theory
val produce_code: Proof.context -> bool -> string list
-> string -> string -> int option -> Token.T list -> (string list * Bytes.T) list * string option list
val present_code: Proof.context -> string list -> Code_Symbol.T list
-> string -> string -> int option -> Token.T list -> Bytes.T
val check_code: bool -> string list -> ((string * bool) * Token.T list) list
-> local_theory -> local_theory
val codeN: string
val generatedN: string
val code_path: Path.T -> Path.T
val code_export_message: theory -> unit
val export: Path.binding -> Bytes.T -> theory -> theory
val compilation_text: Proof.context -> string -> Code_Thingol.program
-> Code_Symbol.T list -> bool -> ((string * class list) list * Code_Thingol.itype) * Code_Thingol.iterm
-> (string list * Bytes.T) list * string
val compilation_text': Proof.context -> string -> string option -> Code_Thingol.program
-> Code_Symbol.T list -> bool -> ((string * class list) list * Code_Thingol.itype) * Code_Thingol.iterm
-> ((string list * Bytes.T) list * string) * (Code_Symbol.T -> string option)
type serializer
type literals = Code_Printer.literals
type language
type ancestry
val assert_target: theory -> string -> string
val add_language: string * language -> theory -> theory
val add_derived_target: string * ancestry -> theory -> theory
val the_literals: Proof.context -> string -> literals
val parse_args: 'a parser -> Token.T list -> 'a
val default_code_width: int Config.T
type ('a, 'b, 'c, 'd, 'e, 'f) symbol_attr_decl
val set_identifiers: (string, string, string, string, string, string) symbol_attr_decl
-> theory -> theory
val set_printings: (Code_Printer.raw_const_syntax, Code_Printer.tyco_syntax, string, unit, unit, string * Code_Symbol.T list) symbol_attr_decl
-> theory -> theory
val add_reserved: string -> string -> theory -> theory
end;
structure Code_Target : CODE_TARGET =
struct
open Basic_Code_Symbol;
open Basic_Code_Thingol;
type literals = Code_Printer.literals;
type ('a, 'b, 'c, 'd, 'e, 'f) symbol_attr_decl =
(string * (string * 'a option) list, string * (string * 'b option) list,
class * (string * 'c option) list, (class * class) * (string * 'd option) list,
(class * string) * (string * 'e option) list,
string * (string * 'f option) list) Code_Symbol.attr;
type tyco_syntax = Code_Printer.tyco_syntax;
type raw_const_syntax = Code_Printer.raw_const_syntax;
fun cert_const ctxt const =
let
val _ = if Sign.declared_const (Proof_Context.theory_of ctxt) const then ()
else error ("No such constant: " ^ quote const);
in const end;
fun read_const ctxt = Code.read_const (Proof_Context.theory_of ctxt);
fun cert_tyco ctxt tyco =
let
val _ = if Sign.declared_tyname (Proof_Context.theory_of ctxt) tyco then ()
else error ("No such type constructor: " ^ quote tyco);
in tyco end;
fun read_tyco ctxt =
#1 o dest_Type o Proof_Context.read_type_name {proper = true, strict = true} ctxt;
fun cert_class ctxt class =
let
val _ = Axclass.get_info (Proof_Context.theory_of ctxt) class;
in class end;
val parse_classrel_ident = Parse.class --| \<^keyword>‹<› -- Parse.class;
fun cert_inst ctxt (class, tyco) =
(cert_class ctxt class, cert_tyco ctxt tyco);
fun read_inst ctxt (raw_tyco, raw_class) =
(read_tyco ctxt raw_tyco, Proof_Context.read_class ctxt raw_class);
val parse_inst_ident = Parse.name --| \<^keyword>‹::› -- Parse.class;
fun cert_syms ctxt =
Code_Symbol.map_attr (cert_const ctxt) (cert_tyco ctxt)
(cert_class ctxt) (apply2 (cert_class ctxt)) (cert_inst ctxt) I;
fun read_syms ctxt =
Code_Symbol.map_attr (read_const ctxt) (read_tyco ctxt)
(Proof_Context.read_class ctxt) (apply2 (Proof_Context.read_class ctxt)) (read_inst ctxt) I;
fun cert_syms' ctxt =
Code_Symbol.map_attr (apfst (cert_const ctxt)) (apfst (cert_tyco ctxt))
(apfst (cert_class ctxt)) ((apfst o apply2) (cert_class ctxt)) (apfst (cert_inst ctxt)) I;
fun read_syms' ctxt =
Code_Symbol.map_attr (apfst (read_const ctxt)) (apfst (read_tyco ctxt))
(apfst (Proof_Context.read_class ctxt)) ((apfst o apply2) (Proof_Context.read_class ctxt)) (apfst (read_inst ctxt)) I;
fun check_name is_module s =
let
val _ = if s = "" then error "Bad empty code name" else ();
val xs = Long_Name.explode s;
val xs' = if is_module
then map (Name.desymbolize NONE) xs
else if length xs < 2
then error ("Bad code name without module component: " ^ quote s)
else
let
val (ys, y) = split_last xs;
val ys' = map (Name.desymbolize NONE) ys;
val y' = Name.desymbolize NONE y;
in ys' @ [y'] end;
in if xs' = xs
then if is_module then (xs, "") else split_last xs
else error ("Invalid code name: " ^ quote s ^ "\n"
^ "better try " ^ quote (Long_Name.implode xs'))
end;
datatype pretty_modules = Singleton of string * Pretty.T | Hierarchy of (string list * Pretty.T) list;
type serializer = Token.T list
-> Proof.context
-> {
reserved_syms: string list,
identifiers: Code_Printer.identifiers,
includes: (string * Pretty.T) list,
class_syntax: string -> string option,
tyco_syntax: string -> Code_Printer.tyco_syntax option,
const_syntax: string -> Code_Printer.const_syntax option,
module_name: string }
-> Code_Thingol.program
-> Code_Symbol.T list
-> pretty_modules * (Code_Symbol.T -> string option);
type language = {serializer: serializer, literals: literals,
check: {env_var: string, make_destination: Path.T -> Path.T, make_command: string -> string},
evaluation_args: Token.T list};
type ancestry = (string * (Code_Thingol.program -> Code_Thingol.program)) list;
val merge_ancestry : ancestry * ancestry -> ancestry = AList.join (op =) (K snd);
type target = {serial: serial, language: language, ancestry: ancestry};
structure Targets = Theory_Data
(
type T = (target * Code_Printer.data) Symtab.table * int;
val empty = (Symtab.empty, 0);
fun merge ((targets1, index1), (targets2, index2)) : T =
let
val targets' =
Symtab.join (fn target_name => fn ((target1, data1), (target2, data2)) =>
if #serial target1 = #serial target2 then
({serial = #serial target1, language = #language target1,
ancestry = merge_ancestry (#ancestry target1, #ancestry target2)},
Code_Printer.merge_data (data1, data2))
else error ("Incompatible targets: " ^ quote target_name)) (targets1, targets2)
val index' = Int.max (index1, index2);
in (targets', index') end;
);
val exists_target = Symtab.defined o #1 o Targets.get;
val lookup_target_data = Symtab.lookup o #1 o Targets.get;
fun assert_target thy target_name =
if exists_target thy target_name
then target_name
else error ("Unknown code target language: " ^ quote target_name);
fun reset_index thy =
if #2 (Targets.get thy) = 0 then NONE
else SOME ((Targets.map o apsnd) (K 0) thy);
val _ = Theory.setup (Theory.at_begin reset_index);
fun next_export thy =
let
val thy' = (Targets.map o apsnd) (fn i => i + 1) thy;
val i = #2 (Targets.get thy');
in ("export" ^ string_of_int i, thy') end;
fun fold1 f xs = fold f (tl xs) (hd xs);
fun join_ancestry thy target_name =
let
val _ = assert_target thy target_name;
val the_target_data = the o lookup_target_data thy;
val (target, this_data) = the_target_data target_name;
val ancestry = #ancestry target;
val modifies = rev (map snd ancestry);
val modify = fold (curry (op o)) modifies I;
val datas = rev (map (snd o the_target_data o fst) ancestry) @ [this_data];
val data = fold1 (fn data' => fn data => Code_Printer.merge_data (data, data')) datas;
in (modify, (target, data)) end;
fun allocate_target target_name target thy =
let
val _ = if exists_target thy target_name
then error ("Attempt to overwrite existing target " ^ quote target_name)
else ();
in
thy
|> (Targets.map o apfst o Symtab.update) (target_name, (target, Code_Printer.empty_data))
end;
fun add_language (target_name, language) =
allocate_target target_name {serial = serial (), language = language,
ancestry = []};
fun add_derived_target (target_name, initial_ancestry) thy =
let
val _ = if null initial_ancestry
then error "Must derive from existing target(s)" else ();
fun the_target_data target_name' = case lookup_target_data thy target_name' of
NONE => error ("Unknown code target language: " ^ quote target_name')
| SOME target_data' => target_data';
val targets = rev (map (fst o the_target_data o fst) initial_ancestry);
val supremum = fold1 (fn target' => fn target =>
if #serial target = #serial target'
then target else error "Incompatible targets") targets;
val ancestries = map #ancestry targets @ [initial_ancestry];
val ancestry = fold1 (fn ancestry' => fn ancestry =>
merge_ancestry (ancestry, ancestry')) ancestries;
in
allocate_target target_name {serial = #serial supremum, language = #language supremum,
ancestry = ancestry} thy
end;
fun map_data target_name f thy =
let
val _ = assert_target thy target_name;
in
thy
|> (Targets.map o apfst o Symtab.map_entry target_name o apsnd o Code_Printer.map_data) f
end;
fun map_reserved target_name = map_data target_name o @{apply 3(1)};
fun map_identifiers target_name = map_data target_name o @{apply 3(2)};
fun map_printings target_name = map_data target_name o @{apply 3(3)};
val codeN = "code";
val generatedN = "Generated_Code";
val code_path = Path.append (Path.basic codeN);
fun code_export_message thy = writeln (Export.message thy (Path.basic codeN));
fun export binding content thy =
let
val thy' = thy |> Generated_Files.add_files (binding, content);
val _ = Export.export thy' binding (Bytes.contents_blob content);
in thy' end;
local
fun export_logical (file_prefix, file_pos) format pretty_modules =
let
fun binding path = Path.binding (path, file_pos);
val prefix = code_path file_prefix;
in
(case pretty_modules of
Singleton (ext, p) => export (binding (Path.ext ext prefix)) (format p)
| Hierarchy modules =>
fold (fn (names, p) =>
export (binding (prefix + Path.make names)) (format p)) modules)
#> tap code_export_message
end;
fun export_physical root format pretty_modules =
(case pretty_modules of
Singleton (_, p) => Bytes.write root (format p)
| Hierarchy code_modules =>
List.app (fn (names, p) =>
let
val segments = map Path.basic names;
in
Isabelle_System.make_directory (Path.appends (root :: (fst (split_last segments))));
Bytes.write (Path.appends (root :: segments)) (format p)
end)
code_modules);
in
fun export_result some_file format (pretty_code, _) thy =
(case some_file of
NONE =>
let val (file_prefix, thy') = next_export thy;
in export_logical (Path.basic file_prefix, Position.none) format pretty_code thy' end
| SOME ({physical = false}, file_prefix) =>
export_logical file_prefix format pretty_code thy
| SOME ({physical = true}, (file, _)) =>
let
val root = File.full_path (Resources.master_directory thy) file;
val _ = File.check_dir (Path.dir root);
val _ = export_physical root format pretty_code;
in thy end);
fun produce_result syms width pretty_modules =
let val format = Code_Printer.format [] width in
(case pretty_modules of
(Singleton (_, p), deresolve) => ([([], format p)], map deresolve syms)
| (Hierarchy code_modules, deresolve) =>
((map o apsnd) format code_modules, map deresolve syms))
end;
fun present_result selects width (pretty_modules, _) =
let val format = Code_Printer.format selects width in
(case pretty_modules of
Singleton (_, p) => format p
| Hierarchy code_modules =>
Bytes.appends (separate (Bytes.string "\n\n") (map (format o #2) code_modules)))
end;
end;
val default_code_width = Attrib.setup_config_int \<^binding>‹default_code_width› (K 80);
fun default_width ctxt = Config.get ctxt default_code_width;
val the_width = the_default o default_width;
fun the_language ctxt =
#language o fst o the o lookup_target_data (Proof_Context.theory_of ctxt);
fun the_literals ctxt = #literals o the_language ctxt;
fun the_evaluation_args ctxt = #evaluation_args o the_language ctxt;
local
fun activate_target ctxt target_name =
let
val thy = Proof_Context.theory_of ctxt;
val (modify, (target, data)) = join_ancestry thy target_name;
val serializer = (#serializer o #language) target;
in { serializer = serializer, data = data, modify = modify } end;
fun project_program_for_syms ctxt syms_hidden syms1 program1 =
let
val syms2 = subtract (op =) syms_hidden syms1;
val program2 = Code_Symbol.Graph.restrict (not o member (op =) syms_hidden) program1;
val unimplemented = Code_Thingol.unimplemented program2;
val _ =
if null unimplemented then ()
else error ("No code equations for " ^
commas (map (Proof_Context.markup_const ctxt) unimplemented));
val syms3 = Code_Symbol.Graph.all_succs program2 syms2;
val program3 = Code_Symbol.Graph.restrict (member (op =) syms3) program2;
in program3 end;
fun project_includes_for_syms syms includes =
let
fun select_include (name, (content, cs)) =
if null cs orelse exists (member (op =) syms) cs
then SOME (name, content) else NONE;
in map_filter select_include includes end;
fun prepare_serializer ctxt target_name module_name args proto_program syms =
let
val { serializer, data, modify } = activate_target ctxt target_name;
val printings = Code_Printer.the_printings data;
val _ = if module_name = "" then () else (check_name true module_name; ())
val hidden_syms = Code_Symbol.symbols_of printings;
val prepared_program = project_program_for_syms ctxt hidden_syms syms proto_program;
val prepared_syms = subtract (op =) hidden_syms syms;
val all_syms = Code_Symbol.Graph.all_succs proto_program syms;
val includes = project_includes_for_syms all_syms
(Code_Symbol.dest_module_data printings);
val prepared_serializer = serializer args ctxt {
reserved_syms = Code_Printer.the_reserved data,
identifiers = Code_Printer.the_identifiers data,
includes = includes,
const_syntax = Code_Symbol.lookup_constant_data printings,
tyco_syntax = Code_Symbol.lookup_type_constructor_data printings,
class_syntax = Code_Symbol.lookup_type_class_data printings,
module_name = module_name };
in
(prepared_serializer o modify, (prepared_program, prepared_syms))
end;
fun invoke_serializer ctxt target_name module_name args program all_public syms =
let
val (prepared_serializer, (prepared_program, prepared_syms)) =
prepare_serializer ctxt target_name module_name args program syms;
val exports = if all_public then [] else prepared_syms;
in
Code_Preproc.timed_exec "serializing"
(fn () => prepared_serializer prepared_program exports) ctxt
end;
fun assert_module_name "" = error "Empty module name not allowed here"
| assert_module_name module_name = module_name;
in
fun export_code_for some_file target_name module_name some_width args program all_public cs lthy =
let
val format = Code_Printer.format [] (the_width lthy some_width);
val res = invoke_serializer lthy target_name module_name args program all_public cs;
in Local_Theory.background_theory (export_result some_file format res) lthy end;
fun produce_code_for ctxt target_name module_name some_width args =
let
val serializer = invoke_serializer ctxt target_name (assert_module_name module_name) args;
in fn program => fn all_public => fn syms =>
produce_result syms (the_width ctxt some_width)
(serializer program all_public syms)
end;
fun present_code_for ctxt target_name module_name some_width args =
let
val serializer = invoke_serializer ctxt target_name (assert_module_name module_name) args;
in fn program => fn (syms, selects) =>
present_result selects (the_width ctxt some_width) (serializer program false syms)
end;
fun check_code_for target_name strict args program all_public syms lthy =
let
val { env_var, make_destination, make_command } = #check (the_language lthy target_name);
val format = Code_Printer.format [] 80;
fun ext_check p =
let
val destination = make_destination p;
val lthy' = lthy
|> Local_Theory.background_theory
(export_result (SOME ({physical = true}, (destination, Position.none))) format
(invoke_serializer lthy target_name generatedN args program all_public syms));
val cmd = make_command generatedN;
val context_cmd = "cd " ^ File.bash_path p ^ " && " ^ cmd ^ " 2>&1";
in
if Isabelle_System.bash context_cmd <> 0
then error ("Code check failed for " ^ target_name ^ ": " ^ cmd)
else lthy'
end;
in
if not (env_var = "") andalso getenv env_var = "" then
if strict
then error (env_var ^ " not set; cannot check code for " ^ target_name)
else (warning (env_var ^ " not set; skipped checking code for " ^ target_name); lthy)
else Isabelle_System.with_tmp_dir "Code_Test" ext_check
end;
fun dynamic_compilation_text prepared_serializer width prepared_program syms all_public ((vs, ty), t) =
let
val _ = if Code_Thingol.contains_dict_var t then
error "Term to be evaluated contains free dictionaries" else ();
val v' = singleton (Name.variant_list (map fst vs)) "a";
val vs' = (v', []) :: vs;
val ty' = ITyVar v' `-> ty;
val program = prepared_program
|> Code_Symbol.Graph.new_node (Code_Symbol.value,
Code_Thingol.Fun (((vs', ty'), [(([IVar (SOME "dummy")], t), (NONE, true))]), NONE))
|> fold (curry (perhaps o try o
Code_Symbol.Graph.add_edge) Code_Symbol.value) syms;
val (pretty_code, deresolve) =
prepared_serializer program (if all_public then [] else [Code_Symbol.value]);
val (compilation_code, [SOME value_name]) =
produce_result [Code_Symbol.value] width (pretty_code, deresolve);
in ((compilation_code, value_name), deresolve) end;
fun compilation_text' ctxt target_name some_module_name program syms =
let
val width = default_width ctxt;
val evaluation_args = the_evaluation_args ctxt target_name;
val (prepared_serializer, (prepared_program, _)) =
prepare_serializer ctxt target_name (the_default generatedN some_module_name) evaluation_args program syms;
in
Code_Preproc.timed_exec "serializing"
(fn () => dynamic_compilation_text prepared_serializer width prepared_program syms) ctxt
end;
fun compilation_text ctxt target_name program syms =
fst oo compilation_text' ctxt target_name NONE program syms
end;
fun prep_destination (location, source) =
let
val s = Input.string_of source
val pos = Input.pos_of source
val delimited = Input.is_delimited source
in
if location = {physical = false}
then (location, Path.explode_pos (s, pos))
else
let
val _ =
if s = ""
then error ("Bad bad empty " ^ Markup.markup Markup.keyword2 "file" ^ " argument")
else ();
val _ =
legacy_feature
(Markup.markup Markup.keyword1 "export_code" ^ " with " ^
Markup.markup Markup.keyword2 "file" ^ " argument" ^ Position.here pos);
val _ = Position.report pos (Markup.language_path delimited);
val path = #1 (Path.explode_pos (s, pos));
val _ = Position.report pos (Markup.path (File.symbolic_path path));
in (location, (path, pos)) end
end;
fun export_code all_public cs seris lthy =
let
val program = Code_Thingol.consts_program lthy cs;
in
(seris, lthy) |-> fold (fn (((target_name, module_name), some_file), args) =>
export_code_for some_file target_name module_name NONE args
program all_public (map Constant cs))
end;
fun export_code_cmd all_public raw_cs seris lthy =
let
val cs = Code_Thingol.read_const_exprs lthy raw_cs;
in export_code all_public cs ((map o apfst o apsnd o Option.map) prep_destination seris) lthy end;
fun produce_code ctxt all_public cs target_name some_width some_module_name args =
let
val program = Code_Thingol.consts_program ctxt cs;
in produce_code_for ctxt target_name some_width some_module_name args program all_public (map Constant cs) end;
fun present_code ctxt cs syms target_name some_width some_module_name args =
let
val program = Code_Thingol.consts_program ctxt cs;
in present_code_for ctxt target_name some_width some_module_name args program (map Constant cs, syms) end;
fun check_code all_public cs seris lthy =
let
val program = Code_Thingol.consts_program lthy cs;
in
(seris, lthy) |-> fold (fn ((target_name, strict), args) =>
check_code_for target_name strict args program all_public (map Constant cs))
end;
fun check_code_cmd all_public raw_cs seris lthy =
check_code all_public (Code_Thingol.read_const_exprs lthy raw_cs) seris lthy;
fun add_reserved target_name sym thy =
let
val (_, (_, data)) = join_ancestry thy target_name;
val _ = if member (op =) (Code_Printer.the_reserved data) sym
then error ("Reserved symbol " ^ quote sym ^ " already declared")
else ();
in
thy
|> map_reserved target_name (insert (op =) sym)
end;
fun check_const_syntax ctxt target_name c syn =
if Code_Printer.requires_args syn > Code.args_number (Proof_Context.theory_of ctxt) c
then error ("Too many arguments in syntax for constant " ^ quote c)
else Code_Printer.prep_const_syntax (Proof_Context.theory_of ctxt) (the_literals ctxt target_name) c syn;
fun check_tyco_syntax ctxt target_name tyco syn =
if fst syn <> Sign.arity_number (Proof_Context.theory_of ctxt) tyco
then error ("Number of arguments mismatch in syntax for type constructor " ^ quote tyco)
else syn;
fun arrange_name_decls x =
let
fun arrange is_module (sym, target_names) = map (fn (target, some_name) =>
(target, (sym, Option.map (check_name is_module) some_name))) target_names;
in
Code_Symbol.maps_attr' (arrange false) (arrange false) (arrange false)
(arrange false) (arrange false) (arrange true) x
end;
fun cert_name_decls ctxt = cert_syms' ctxt #> arrange_name_decls;
fun read_name_decls ctxt = read_syms' ctxt #> arrange_name_decls;
fun set_identifier (target_name, sym_name) = map_identifiers target_name (Code_Symbol.set_data sym_name);
fun gen_set_identifiers prep_name_decl raw_name_decls thy =
fold set_identifier (prep_name_decl (Proof_Context.init_global thy) raw_name_decls) thy;
val set_identifiers = gen_set_identifiers cert_name_decls;
val set_identifiers_cmd = gen_set_identifiers read_name_decls;
fun arrange_printings prep_syms ctxt =
let
fun arrange check (sym, target_syns) =
map (fn (target_name, some_syn) =>
(target_name, (sym, Option.map (check ctxt target_name sym) some_syn))) target_syns;
in
Code_Symbol.maps_attr'
(arrange check_const_syntax) (arrange check_tyco_syntax)
(arrange ((K o K o K) I)) (arrange ((K o K o K) I)) (arrange ((K o K o K) I))
(arrange (fn ctxt => fn _ => fn _ => fn (raw_content, raw_syms) =>
(Pretty.blk (0, Pretty.fbreaks (map Code_Printer.str (split_lines raw_content))),
map (prep_syms ctxt) raw_syms)))
end;
fun cert_printings ctxt = cert_syms' ctxt #> arrange_printings cert_syms ctxt;
fun read_printings ctxt = read_syms' ctxt #> arrange_printings read_syms ctxt;
fun set_printing (target_name, sym_syn) = map_printings target_name (Code_Symbol.set_data sym_syn);
fun gen_set_printings prep_print_decl raw_print_decls thy =
fold set_printing (prep_print_decl (Proof_Context.init_global thy) raw_print_decls) thy;
val set_printings = gen_set_printings cert_printings;
val set_printings_cmd = gen_set_printings read_printings;
fun parse_args f args =
case Scan.read Token.stopper f args
of SOME x => x
| NONE => error "Bad serializer arguments";
val (constantK, type_constructorK, type_classK, class_relationK, class_instanceK, code_moduleK) =
(\<^keyword>‹constant›, \<^keyword>‹type_constructor›, \<^keyword>‹type_class›,
\<^keyword>‹class_relation›, \<^keyword>‹class_instance›, \<^keyword>‹code_module›);
local
val parse_constants = constantK |-- Scan.repeat1 Parse.term >> map Constant;
val parse_type_constructors = type_constructorK |-- Scan.repeat1 Parse.type_const >> map Type_Constructor;
val parse_classes = type_classK |-- Scan.repeat1 Parse.class >> map Type_Class;
val parse_class_relations = class_relationK |-- Scan.repeat1 parse_classrel_ident >> map Class_Relation;
val parse_instances = class_instanceK |-- Scan.repeat1 parse_inst_ident >> map Class_Instance;
val parse_simple_symbols = Scan.repeats1 (parse_constants || parse_type_constructors || parse_classes
|| parse_class_relations || parse_instances);
fun parse_single_symbol_pragma parse_keyword parse_isa parse_target =
parse_keyword |-- Parse.!!! (parse_isa --| (\<^keyword>‹⇀› || \<^keyword>‹=>›)
-- Parse.and_list1 (\<^keyword>‹(› |-- (Parse.name --| \<^keyword>‹)› -- Scan.option parse_target)));
fun parse_symbol_pragma parse_const parse_tyco parse_class parse_classrel parse_inst parse_module =
parse_single_symbol_pragma constantK Parse.term parse_const
>> Constant
|| parse_single_symbol_pragma type_constructorK Parse.type_const parse_tyco
>> Type_Constructor
|| parse_single_symbol_pragma type_classK Parse.class parse_class
>> Type_Class
|| parse_single_symbol_pragma class_relationK parse_classrel_ident parse_classrel
>> Class_Relation
|| parse_single_symbol_pragma class_instanceK parse_inst_ident parse_inst
>> Class_Instance
|| parse_single_symbol_pragma code_moduleK Parse.name parse_module
>> Module;
fun parse_symbol_pragmas parse_const parse_tyco parse_class parse_classrel parse_inst parse_module =
Parse.enum1 "|" (Parse.group (fn () => "code symbol pragma")
(parse_symbol_pragma parse_const parse_tyco parse_class parse_classrel parse_inst parse_module));
val code_expr_argsP = Scan.optional (\<^keyword>‹(› |-- Parse.args --| \<^keyword>‹)›) [];
fun code_expr_inP (all_public, raw_cs) =
Scan.repeat (\<^keyword>‹in› |-- Parse.!!! (Parse.name
-- Scan.optional (\<^keyword>‹module_name› |-- Parse.name) ""
-- Scan.option
((\<^keyword>‹file_prefix› >> K {physical = false} || \<^keyword>‹file› >> K {physical = true})
-- Parse.!!! Parse.path_input)
-- code_expr_argsP))
>> (fn seri_args => export_code_cmd all_public raw_cs seri_args);
fun code_expr_checkingP (all_public, raw_cs) =
(\<^keyword>‹checking› |-- Parse.!!!
(Scan.repeat (Parse.name -- (Scan.optional (\<^keyword>‹?› >> K false) true) -- code_expr_argsP)))
>> (fn seri_args => check_code_cmd all_public raw_cs seri_args);
in
val _ =
Outer_Syntax.command \<^command_keyword>‹code_reserved›
"declare words as reserved for target language"
(Parse.name -- Scan.repeat1 Parse.name
>> (fn (target, reserveds) => (Toplevel.theory o fold (add_reserved target)) reserveds));
val _ =
Outer_Syntax.command \<^command_keyword>‹code_identifier› "declare mandatory names for code symbols"
(parse_symbol_pragmas Parse.name Parse.name Parse.name Parse.name Parse.name Parse.name
>> (Toplevel.theory o fold set_identifiers_cmd));
val _ =
Outer_Syntax.command \<^command_keyword>‹code_printing› "declare dedicated printing for code symbols"
(parse_symbol_pragmas (Code_Printer.parse_const_syntax) (Code_Printer.parse_tyco_syntax)
Parse.string (Parse.minus >> K ()) (Parse.minus >> K ())
(Parse.embedded -- Scan.optional (\<^keyword>‹for› |-- parse_simple_symbols) [])
>> (Toplevel.theory o fold set_printings_cmd));
val _ =
Outer_Syntax.local_theory \<^command_keyword>‹export_code› "generate executable code for constants"
(Scan.optional (\<^keyword>‹open› >> K true) false -- Scan.repeat1 Parse.term
:|-- (fn args => (code_expr_checkingP args || code_expr_inP args)));
end;
local
val parse_const_terms = Args.theory -- Scan.repeat1 Args.term
>> uncurry (fn thy => map (Code.check_const thy));
fun parse_symbols keyword parse internalize mark_symbol =
Scan.lift (keyword --| Args.colon) |-- Args.theory -- Scan.repeat1 parse
>> uncurry (fn thy => map (mark_symbol o internalize thy));
val parse_consts = parse_symbols constantK Args.term
Code.check_const Constant;
val parse_types = parse_symbols type_constructorK (Scan.lift Args.name)
Sign.intern_type Type_Constructor;
val parse_classes = parse_symbols type_classK (Scan.lift Args.name)
Sign.intern_class Type_Class;
val parse_instances = parse_symbols class_instanceK (Scan.lift (Args.name --| Args.$$$ "::" -- Args.name))
(fn thy => fn (raw_tyco, raw_class) =>
(Sign.intern_class thy raw_tyco, Sign.intern_type thy raw_class)) Class_Instance;
in
val _ = Theory.setup
(Document_Output.antiquotation_raw \<^binding>‹code_stmts›
(parse_const_terms --
Scan.repeats (parse_consts || parse_types || parse_classes || parse_instances)
-- Scan.lift (Args.parens (Args.name -- Scan.option Parse.int)))
(fn ctxt => fn ((consts, symbols), (target_name, some_width)) =>
present_code ctxt consts symbols
target_name "Example" some_width []
|> Bytes.content
|> trim_line
|> Document_Output.verbatim (Config.put Document_Antiquotation.thy_output_display true ctxt)));
end;
end;